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a b s t r a c t

We show that the thermodynamic conjugate of the extra stress is a more suitable independent variable

than the extra stress itself for the thermodynamic description of some nonlinear models of viscoelasticity.

This brings more precision to the knowledge of non-equilibrium thermodynamic potentials, and provides

an illustration of a recently proposed conservation–dissipation formalism which allows bringing extended

irreversible thermodynamics to the nonlinear regime.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The suitable selection of independent variables is one of the

basic problems in non-equilibrium thermodynamics[1]. Rheological

systems are especially challenging from this point of view, because

they have a very rich and dynamic microscopic structure. For a

microscopic understanding and simulation of their behavior, struc-

tural variables such as the conformation tensor C, proportional

to 〈�R�R〉, with �R the end-to-end vector of the macromolecules

and 〈���〉 standing for the average over all molecules [2–5], are

especially suitable and useful. The conformation tensor C is related

to the stress tensor σ in a simple way (usually, through a linear

algebraic relation). The use of this variable, and other related

variables describing further structural details of the system, in

combination with molecular dynamics simulations of the flowing

system and with especially wide and powerful macroscopic ther-

modynamic formalisms as GENERIC [2–5], has been at the basis of

systematic analyses of very complex rheological systems involving

different time scales (see, for instance, [6–12]).

More traditional non-equilibrium and macroscopically focused

thermodynamic approaches to rheological modeling [12–14] are

less specific and detailed than the mentioned recent approaches.

They focus on more macroscopic variables, mainly the stress ten-

sor - or the several contributions to it -, and are mainly interested

in the compatibility of rheological models with the second law of

thermodynamics [12–16], without the explicit knowledge of the
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microstructural variables. Whereas more microscopically-minded

approaches aim to detailed descriptions of different physical sys-

tems, more macroscopically-minded theories aim to search for the

features which are common to a wide diversity of systems,despite

having less predictive power in the particular details.

A topic of particular interest in the macroscopic theories is the

contribution of the non-equilibrium variables to the entropy and

the entropy flux. Through their contribution to the entropy, these

non-equilibrium variables contribute also to the equations of state

and may modify the phase diagram of flowing rheological fluids.

For instance, polymer solubility or miscibility is known to be influ-

enced by the imposed shear rate or shear stress [13,15].

A phenomenological alternative to the explicit use of internal

structural variables, which are not always easy to identify, mea-

sure, or control, is to directly use the extra stress, or some related

macroscopic non-equilibrium quantities, as an additional indepen-

dent thermodynamic variable, leading to non-equilibrium expres-

sions for entropy[12–14]. In particular, in extended thermodynam-

ics, σ is used as additional variable in the entropy s, which is of

the form s(u, σ ). When σ and C are linearly related, one may

go from the use of σ to the use of C by means of a Legendre

transform [17]. The aim of this paper is to go to the non-linear

regime in the framework of such macroscopic theories and explore

the most suitable independent variables. In Section 2, we briefly

review the relation between linear Maxwell viscoelastic equation

and the non-equilibrium entropy of extended thermodynamics. In

Section 3, we present the nonlinear version of (1) considered here,

and illustrate how the entropy (2) fails to describe it. In Section 4,

by using its corresponding thermodynamic conjugate instead of σ
itself, we present a different version of non-equilibrium entropy
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which shows in a direct way the compatibility of the nonlinear

viscoelastic equation with the second law of thermodynamics. In

Section 5 we make some concluding comments on the new ver-

sion of entropy, Legendre transforms, and GENERIC thermodynamic

formalism for nonlinear constitutive equations.

2. Linear viscoelasticity and extended entropy

Here, in particular, we focus our attention on the form of

macroscopic non-equilibrium entropy in connection with vis-

coelasticity. Though the form of entropy plays a central role in the

analysis of compatibility of constitutive equations with the second

law, its explicit form is rarely studied in detail, as the dynami-

cal aspects of rheological equations, being directly observable and

with relevant physical consequences, focus the attention of most

researches.

The simplest model for viscoelasticity is the Maxwell model,

which is characterized by the well-known equation [2,5,12,13]

τ
Dσ

Dt
+ σ = 2ηD (1)

in which σ is the extra stress tensor, τ is the viscoelastic

relaxation time, η is the shear viscosity, D is the rate of de-

formation tensor, which represents the symmetric part of the

velocity gradient ∇�v as D = 1
2 (∇�v + �v∇), and whose second

invariant is the so-called shear rate γ̇ , and Dσ/Dt stands

for frame-invariant forms of the time derivative defined as

Dσ/Dt ≡ dσ/dt − a[(∇ →
v ) · σ + σ · (∇ →

v )
T
], with d/dt the mate-

rial time derivative. In [18–21], the upper-convected time (a = 1)

was used for the viscoelastic models to be frame-invariant, but

other time derivatives like the co-rotational one, or the lower

convected one (a = −1) could also be used [2–5,12–14]. Since

the macromolecular systems usually have several relaxational

degrees of freedom contributing to σ , model (1) is generalized

by taking σ = ∑
σ

i
, with each contribution σ i being described

by an equation like (1), with its own ηi and τ i. The several

relaxation times may span a wide range of time scales. Here, for

the sake of simplicity, and because the corresponding extension is

straightforward, we will consider a single degree of freedom.

In the linear situation that η and τ are independent of time and

deformation, for compressible fluid, the corresponding Gibbs equa-

tion for the non-equilibrium thermodynamic entropy s per unit

mass of the fluid in extended irreversible thermodynamics (EIT) is

[13,22–24]

ds(u, σ ) = T−1du − τ

2ηTρ
σ : dσ (2)

with u the internal energy per unit mass and T absolute tempera-

ture. In the case that σ splits in several independent contributions

σ i, as mentioned above, the last term in (2) would be the sum of

the contributions of the several σ i, each of them having the same

form but with the corresponding τ i/ηi. Here, for simplicity, we will

consider σ as a single variable.

Note that s(u, σ ) depends on the shear stress, a non-equilibrium

variable which vanishes at equilibrium. Thus, this entropy is

not the classical local-equilibrium entropy, but a typical non-

equilibrium entropy. As said above, an alternative to the use of σ ,

which is a macroscopic variable, would be to consider some mi-

croscopic variable related to the microstructure of the fluid as the

conformation tensor C . Whereas the use of macromolecular inter-

nal or structural variables may be especially illuminating for a mi-

croscopic understanding of the fluid, the thermodynamic descrip-

tion based on u and σ (or on T and σ ) may be more useful from

a macroscopic point of view, because it is a directly measurable

variable.

3. Non-linear viscoelastic equation

In nonlinear situations, η and τ may depend on fluid mi-

crostructure which, in its turn, depends on the shear condition.

Then, η and τ may be taken to depend on some characteristic

microstructure variables or, alternatively, on the shear rate γ̇ as

in shear-thinning fluids, or on γ and γ̇ as in gel–sol transitions.

An open thermodynamic question is which will be the extension

of the Gibbs equation (2) for nonlinear extension, i.e. which is

the form of entropy more directly related to nonlinear versions of

equation (1).

For nonlinear viscoelasticity, we will consider a nonlinear ex-

tension of (1) as proposed by Marrucci et al. [18–21], and we

will ask for the corresponding extension of the entropy (2), re-

lated to a recent conservation–dissipation formalism (CDF) of ir-

reversible thermodynamics [25], and compare it to extended irre-

versible thermodynamics (EIT) [13,22–24] as well as the GENERIC

formalism [3–5].

The simplest nonlinear extension of (1) would be to use (1)

itself, but with η and τ changing with time and deformation, or

depending on the microstructure. However, from an experimental

point of view, this model is not satisfactory enough. Instead of (1),

Marrucci et al. [18–21] have proposed for systems with structure-

dependent relaxation times, to use the following generalized ver-

sion

η
D

Dt

(
τ

η
σ
)

+ σ = 2ηD (3)

which becomes (1) when η and τ are constant (in particular, they

take for D/Dt the upper-convected or contra-variant time deriva-

tive). The ratio η/τ is the so-called elastic modulus G, and its

reciprocal is the steady-state compliance J. Eq. (3) is justified in

the framework of network theories, as applied to polymer melts

and concentrated solutions, where viscosity and relaxation times

strongly depend on the microstructure, thus leading to a shear

rate dependence η(γ̇ ) and τ (γ̇ ). In [18–21], microscopic descrip-

tion of the system was proposed with emphasis on the dynam-

ics, i. e. on the rheological aspects, and compared to experiments

showing its practical suitability. Our aim, instead, will be focused

on the most suitable form of non-equilibrium entropy being com-

patible with equation (3). Additional nonlinear effects would also

be added to (3), as for instance, terms of the form σ · σ , but the

non-equilibrium entropy is known to be related to the relaxational

term of the constitutive equation [13,14,22], so that we focus our

attention on this term.

Note that the suitable thermodynamic potential related to (3)

is not the entropy (2). Indeed, if the Gibbs equation (2) is used as

a starting point for the thermodynamic analysis, one gets for the

evolution equation of σ , equation (1) with η(γ̇ ) and τ (γ̇ ) instead

of equation (3). To see this, recall that the evolution equation for u

is the energy balance equation [2,5,12,13,22,23,26]

ρu̇ = −∇ · �q + σ : D (4)

where �q is the heat flux, and the last term describes viscous dis-

sipation per unit volume and time. The evolution equation for s

according to (2) is

ρ ṡ = T−1ρu̇ − τ

2ηT
σ : σ̇ (5)

In fact, in order that the several terms in (5) are frame-invariant,

the σ̇ in (5) should be interpreted as a frame-invariant time

derivative as mentioned below (1) because σ is a second-order

tensor (in contrast, the several time derivatives reduce to the ma-

terial time derivative for scalar quantities s and u).

Introducing (4) into (5) one finds

ρ ṡ = �q · ∇T−1 + T−1σ : D − τ

2ηT
σ : σ̇ − ∇ · (T−1�q) (6)
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