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a b s t r a c t

An analytic, asymptotic approximation of the nonlinear steady-state equations for viscoelastic creeping

flow, modeled by the Oldroyd-B equations with polymer stress diffusion, is derived. Near the extensional

stagnation point the flow stretches and aligns polymers along the outgoing streamlines of the stagnation

point resulting in a stress-island, or birefringent strand. The polymer stress diffusion coefficient is used,

both as an asymptotic parameter and a regularization parameter. The structure of the singular part of

the polymer stress tensor is a Gaussian aligned with the incoming streamline of the stagnation point; a

smoothed δ-distribution whose width is proportional to the square-root of the diffusion coefficient. The

amplitude of the stress island scales with the Wiessenberg number, and although singular in the limit of

vanishing diffusion, it is integrable in the cross stream direction due to its vanishing width; this yields

a convergent secondary flow. The leading order velocity response to this stress island is constructed and

shown to be independent of the diffusion coefficient in the limit. The secondary circulation counteracts

the forced flow and has a vorticity jump at the location of the stress islands, essentially expelling the

background vorticity from the location of the birefringent strands. The analytic solutions are shown to be

in excellent quantitative agreement with full numerical simulations, and therefore, the analytic solutions

elucidate the salient mechanisms of the flow response to viscoelasticity and the mechanism for instability.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Viscoelastic flows are found in many important engineering and

biological systems. Despite the need to understand these flows in

a variety of complex situations, analysis of the equations of mo-

tion describing viscoelastic fluids, even in the low-Reynolds num-

ber regime, is very incomplete. There are many different models

depending on the rheology of the fluid, but little is known even

for the simplest closed continuum models. One popular model, the

Oldroyd-B model, can be derived from microscopic principles and

represents “Boger” fluids, dilute solutions of polymers immersed in

a Newtonian solvent which exhibit normal stress differences but

not shear thinning. This model is used frequently in simulations

of viscoelastic fluids even though there is no mathematical well-

posedness theory for this system, i.e. it is not known if sufficiently

smooth solutions to this system exist for all time, bringing in to

question the reliability of any numerical simulation.

Flows at internal stagnation points (such as the four-roll mill

flow or the cross-slot or cross channel flow) pose a particular dif-
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ficulty for both theoretical investigation and numerical simulations

of viscoelastic fluids, as polymers are aligned and stretched, and

can create fine features in the flow that are difficult to resolve nu-

merically. However it is precisely at these points in the flow that

interesting dynamics arise. Instabilities have been found in exper-

iments at internal stagnation points [1–5], and related numerical

instabilities are found in similar geometries [6–11]. It is unclear

what is driving these instabilities, but it is reasonable to conjecture

that they are related to the large polymer stresses and stress gra-

dients which accumulate along the incoming and outgoing stream-

lines of these internal stagnation points.

The elastic contribution to the total stress can be incorporated

into the equations of motion by assuming that the total stress on

the fluid, σ = τs + τ p, comes from a solvent contribution τs as

well as a polymer contribution τp. In the case of a Newtonian sol-

vent, the total stress is given by

σ = −pI + ηsγ̇ + τ p,

where ηs is the Newtonian solvent viscosity, and γ̇ = [∇u + ∇uT ]

is the rate-of-strain tensor. Assuming conservation of mass and in-

compressibility the fluid velocity u satisfies

ρ
Du

Dt
= ∇ · σ + f, ∇ · u = 0,
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for density ρ , and body force f, or in the inertialess regime,

∇ · σ + f = 0, ∇ · u = 0. (1)

In the Oldroyd-B model, the symmetric polymer stress tensor, τp,

is advected via the upper-convected derivative and relaxes with a

characteristic relaxation time λ:

τ p + λ
∇
τ p= ηpγ̇ . (2)

Here ηp is the polymer viscosity, and the upper-convected deriva-

tive is defined by

∇
A ≡ ∂A

∂t
+ u · ∇A − (∇u · A + A · (∇u)T ), where

(∇u)i j = ∂ui

∂x j

.

While Boger fluids are used in many experiments of viscoelas-

tic phenomena, it is not immediately clear that the Oldroyd-B

model is a good choice for modeling more general complex flu-

ids. We choose to work with this model due to the generic nature

of the upper-convected derivative. This represents a tensorial mate-

rial derivative and hence will be found in continuum models which

advect a macroscopic elastic stress tensor. Some other variants to

the Oldroyd-B model include the Giesekus [12], Phan-Thien-Tanner

(PTT) [13], and FENE-P models [14]. These models arise from dif-

ferent microscale models of the polymers. All of them introduce

a nonlinear relaxation of stress which results in shear-thinning be-

havior. All of the above-mentioned macroscopic models contain the

upper-convected derivative, the dominant source of nonlinearity in

the equations, which leads to many of the difficulties and inter-

esting phenomena associated with the Oldroyd-B model [8,9,15–

17]. Oldroyd-B is the “simplest” of these models making it a good

model for our theoretical work.

A simple modification to the Oldroyd-B model, which will yield

smooth and bounded stresses [18,19], is to add polymer stress dif-

fusion. The addition of stress diffusion can be derived from the

kinetic theory of dumbbells [15,20], but the stress diffusion coef-

ficient is proportional to the square of the ratio of the bead di-

ameter (or polymer radius of gyration) to the flow length-scale,

which even in the context of micro-fluidics is minute (on the size

of 10−6 at most) [21]. To be useful as a regularization in numer-

ical simulations, artificially large polymer stress diffusion is typ-

ically needed [18,22]. However it is useful to note that there is

an analytical result [19] which proves that any amount of poly-

mer stress diffusion will maintain a smooth and bounded polymer

stress. In this manuscript we use polymer stress diffusion to de-

rive an asymptotic expansion, in orders of the square-root of the

stress diffusion coefficient, for solutions to the Oldroyd-B model

(at zero Reynolds number) in a simple extensional flow geome-

try. This solution provides information about the effect of the large

stress islands, or birefringent strands, on the resultant flow field.

In particular, we are able to take the limit as the diffusion goes

to zero and recover information about the effect of these stress

islands on the flow. Therefore we can determine the first order ef-

fect of the stress island on the velocity in the Stokes-Oldroyd-B

system.

An important structure of the momentum equation, which we

use to guide us, is that at zero-Reynolds number the velocity is

one degree smoother than the stress. This implies that at exten-

sional points in the flow, where the stress accumulates, the exact

value of the stress is not needed to determine the effect on the

velocity. Only the integral of the stress affects the velocity field.

The stress island can be approximated by a smoothed Dirac δ-

distribution. Furthermore, when stress diffusion is included in the

model, a Gaussian becomes an exact solution of the asymptotic ap-

proximation for the stress tensor.

The Gaussian has a well-defined integral even in the limit of

zero diffusion which enables us to close the asymptotic expansion

and give a well defined solution for the velocity. The result of the

transversely narrow and sharply peaked stress distribution is a dip

in the velocity whose magnitude is independent of the stress diffu-

sion. Such a dip in the velocity field has been observed experimen-

tally [23,24] and provides a possible mechanism for the instabili-

ties seen in numerical simulations [6–11]. Simply stated, the insta-

bility mechanism is due to the fact that at extensional points in the

flow the vorticity is low. In the low vorticity region, the stress can

grow and where the stress is large the vorticity is expelled, leaving

a larger area for the stress to begin to oscillate and become un-

stable. Boundary layer approximations near extensional stagnation

points that depend on the polymer extension length and relaxation

time were presented in [25,26].

In what follows we will describe the model and assumptions

and derive an asymptotic expansion for the stress and velocity to

first order in the stress diffusion coefficient. We conclude by show-

ing that the solutions to our model agree extremely well with nu-

merical simulations. The model captures both the leading order ve-

locity response, as well as the amplitude of the stress in the bire-

fringent strands.

1.1. Model

To perform the analysis it is simpler to write Eqs. (1)–(2) in

terms of a conformation tensor, S, defined by

S = Wiξ−1τ p + I. (3)

The addition of a polymer stress diffusion term, ν
S is added to

the stress advection equation. This is necessary to our analysis, and

we perform the asymptotic expansion in orders of the stress diffu-

sion coefficient ν . In non-dimensional form we write the Stokes-

Oldroyd-B equations with polymer diffusion as


u − ∇p + ξWi
−1∇ · S + f = 0, and ∇ · u = 0, (4)

Wi
∇
S +(S − I) = ν
S. (5)

The Weissenberg number, Wi = λ/τ f , is the ratio of the elastic re-

laxation time to the characteristic flow time-scale, set by f which

we set to unity, and ξ = ηp/ηs is the ratio of polymer to solvent

viscosity.

1.2. Outline of solution strategy

The objective of this work is to find an analytic, asymptotic ap-

proximation of Eqs. (1)–(2) at steady state. Our analytical strategy

has a few key steps which exploit both the structure of the up-

per convective derivative and the linearity of the stress feedback

on the Stokes equations. Our steps will proceed as follows.

1. We rescale the velocity field by Wi, yielding a factor of Wi

which multiplies the pressure and the force, f. After the rescal-

ing, Wi does not appear in the advection/diffusion equation for

the stress.

2. In the rescaled variables, we choose a simple background flow,

u, to drive the dynamics of the upper convective derivative,

without specifying the force, f, which creates this flow. Crucially

the flow we choose has the property ∂yu = 0 everywhere. Phys-

ically speaking, this is a flow whose vorticity is zero near the

maximum of the stress island. In constructing the solution, we

will see that the stress feedback on the flow also produces a

velocity field whose vorticity vanishes at the maximum of the

stress island. Additionally, the feedback flow tends to expel vor-

ticity from the vicinity of the maximum of the stress.
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