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a b s t r a c t

The deformation and breakup of a power-law non-Newtonian slender drop in a Newtonian liquid in a

simple shear and creeping flow has been theoretically studied. The problem is governed by three di-

mensionless parameters: The capillary number (Ca), the viscosity ratio (λ), and the power-law index (n)

of the non-Newtonian drop. The results show: (a) slender drops exist if n ≤ 1 only, these drops have

pointed ends; (b) for the same strength of the flow, Newtonian drops are more elongated than shear

thinning drops; and (c) for the same viscosity ratio, shear thinning drops are more difficult to break than

Newtonian drops.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The deformation of a non-buoyant Newtonian drop in a Newto-

nian liquid under creeping flow conditions is governed by two di-

mensionless parameters. The capillary number Ca, the ratio of the

external viscous force (that tends to deform the drop) to the sur-

face tension force (that tends to keep the drop spherical), and λ,

the ratio of the viscosity of the drop to that of the external fluid.

Small deformations are obtained at Ca � 1. In this paper, how-

ever, we shall deal with slender bodies only, which can be realized

when Ca � 1 and λ � 1. A summary of studies in this area can

be found in reviews by Rallison [1], Stone [2] and Briscoe et al. [3].

A slender body theory for a drop in creeping flow was first sug-

gested by Taylor [4], who studied the deformation of a drop in

an axisymmetric extensional flow, where the cross-section of the

drop is circular. The theory, which was later refined by Buckmaster

[5,6], Acrivos & Lo [7] and others, shows that the local radius of the

slender drop has a parabolic shape with pointed ends. According

to the theory, the critical capillary number needed for breakup in-

creases as the viscosity ratio decreases. For an inviscid drop, where

λ = 0, a stable steady shape is always possible, and breakup was

not predicted.

Hinch & Acrivos [8] extended the slender body theory for a

two-dimensional extensional flow, a case where the drop cross-

section is not circular. Their results showed that the drop cross-
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section can be approximated by an ellipse with an axis ratio of 1.5.

The deformation of the drop and the critical strength of the flow,

for drop breakup, were essentially identical to those obtained for

the axisymmetric extensional flow case, where the cross-section of

the drop is circular. Based on these results, together with the fact

that experiments have shown that slender drops in simple shear

flow do not align with the principal axes of strain (at 45° to the

direction of the flow) but rather with the direction of the flow,

Hinch & Acrivos [9] developed a model for drop deformation in

simple shear flow with the assumption that the drop has a circu-

lar local cross-section.

The theoretical solution of Hinch & Acrivos [9] suggests an S-

shaped drop with pointed ends. As the capillary number increases,

the drop becomes thinner and longer and its inclination with the

direction of the flow decreases. Also, the critical capillary number

needed for breakup increases as the viscosity ratio decreases. In

contrast to extensional flow, where no steady shape (stable or un-

stable) can be obtained beyond a critical flow strength; in sim-

ple shear flow, a steady shape (stable or unstable) exits for all

strengths of the flow. The theoretical model of Hinch & Acrivos

[9], for the deformation of inviscid drops, was experimentally con-

firmed by Canedo et al. [10], Rust and Manga [11] and Müller-

Fischer et al. [12,13]. As expected the cross-section of the drop was

not circular, but elliptical with an axis ratio of 1.4 [10]. Further-

more, the theoretical prediction of Hinch & Acrivos [9] for drop

breakup (due to fracture, as opposed to tip streaming), agrees well

with previous experiments conducted by Grace [14]. Drop breakup

by tip streaming, in simple shear flow, has been observed by many

investigators. Today, it is well established that surfactants moving
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Fig. 1. A slender drop in a simple shear flow: R(x,t) is the local radius, η(x,t) is the

centerline position and L(t) is the half-length of the drop.

towards the tips of the drop and accumulating there are responsi-

ble for this phenomenon (De Bruijn, [15]; Janssen et al., [16]; Re-

nardy et al. [17]). The theoretical analysis of Hinch & Acrivos [9]

was extended by Janssen et al. [18] for a drop highly confined be-

tween two parallel walls.

So far, our discussion has been limited to slender drops in

Newtonian systems. This is far from reality in many industrial

applications, such as the mixing of polymer blends, where non-

Newtonian effects such as shear thinning and elasticity are present.

There are a large number of theoretical and experimental studies

on drop deformation and breakup in simple shear flow in non-

Newtonian systems. Unfortunately, these studies are restricted to

small to medium deformations; see for example the publication of

Aggrawal & Sarkar [19] which contains a large literature review.

Despite the fact that there is no experimental study primarily ded-

icated to slender drops in simple shear flow in non-Newtonian sys-

tems, the recent report of Boufarguine et al. [20] suggest that shear

thinning non-Newtonian drops embedded in Newtonian liquids de-

form less than Newtonian drops.

The only theoretical studies dealing with slender drops in non-

Newtonian systems can be found in our previous reports (Favelukis

& Nir, [21]; Favelukis et al., [22]; [23]), but they are restricted to

extensional flow only. Thus, it is the purpose of this paper to ex-

tend the slender-body theoretical analysis of Hinch & Acrivos [9]

for simple shear flow, to non-Newtonian systems. As a first step,

we shall include here non-Newtonian effects inside (but not out-

side) the slender drop and we show that, similar to extensional

flow, a local analysis close to the tip of the drop predicts that only

Newtonian and shear thinning drops can exist. The rheology of the

drop is described by the simple power-law model, which offers

mathematical simplicity. Since the flow within most of the vol-

ume of the slender drop is dominated by shear components, the

power-law model can provide a good description of shear thinning

or thickening effects.

2. The governing equations

2.1. The flow outside the drop

Assume a slender drop embedded in an infinite viscous New-

tonian fluid (see Fig. 1) subjected to a simple shear and creeping

flow, which at infinity is of the form:

vx = Ey, vy = 0, vz = 0 (1)

where E > 0 is a constant shear rate and let the origin coincide

with the drop center. Following Hinch & Acrivos [9], we also as-

sume that the drop has a local circular cross-section in the (y, z)

plane of radius R(x,t), a displacement of the center-line position

above the direction of the flow η(x,t), and a half-length L(t). To

a first approximation, the disturbed velocity profile, outside and

near the surface of the drop, obtained in terms of singularities dis-

tributed along the centerline of the drop, is parallel to the undis-

turbed flow. Adding the flow disturbance, found in Hinch & Acrivos

[9], to Eq. (1), we find:

vx ≈ E

(
η + rsinθ + R2

r
sinθ

)
, vy ≈ 0, vz ≈ 0 (2)

Here r and θ are local polar coordinates with respect to the center-

line of the drop, such that y = η + r sin θ and z = r cos θ . At the

next order the disturbance lies entirely in the yz plane and expres-

sions for the disturbance velocities together with the pressure and

stress profiles can be found in Hinch & Acrivos [9].

2.2. The flow inside the drop

The incompressible non-Newtonian fluid inside the drop obeys

the simple power-law model:

τ = m

∣∣∣∣∣
√

1

2
(γ̇ : γ̇ )

∣∣∣∣∣
n−1

γ̇ (3)

where τ is the viscous stress tensor, γ̇ is the rate of deformation

tensor and m and n are model parameters. For a Newtonian fluid

n = 1 and m becomes the Newtonian viscosity. For a shear thin-

ning (pseudo-plastic) fluid n < 1 while for a shear thickening (di-

latant) fluid n > 1.

The flow within the drop is characterized by a pressure gradi-

ent and with a velocity at the boundary given by Eq. (2) at r = R.

In the absence of an explicit solution for the velocity profile that is

uniformly valid along the entire drop (Bird et al., [24]), an approx-

imation of the inner profile is given by a superposition of the two

modes, drag and pressure driven flows:

vx = E(η + 2r sinθ ) −
(

n

1 + n

)(
R

2m

∂ p

∂x

)1/n

R

[
1 −

(
r

R

)1+1/n
]

(4)

where p is the pressure inside the drop, assumed uniform at each

cross section. Note that this expression reduces to the Newtonian

case (n = 1) given by Hinch & Acrivos [9].

For the similar case of a non-Newtonian slender drop in an ex-

tensional flow (Favelukis et al. [22]), the superposition assumption

equals the exact solution. In a two-dimensional flow, the superpo-

sition approximation and the exact solution are the same when the

upper and lower surfaces move in the same direction with equal

velocity (as it is near the drop tip) or move in opposite directions

with equal velocity (as it is near center of the drop). It is antic-

ipated that, in the intermediate region, the deviation will not be

appreciable due to the relatively small internal pressure gradients

in shear flow.

The volumetric flow rate through each axial cross section along

the drop, obtained by integrating the velocity profile, is:

Q = πR2

[
Eη −

(
n

1 + 3n

)(
R

2m

∂ p

∂x

)1/n

R

]
(5)

This flow is balanced by the rate of volume change, measured

from the center of the drop, at x = 0, to that cross section position:

Q = −π
∂

∂t

∫ x

0

R2dx (6)

Equating the last two equations yields the pressure profile in-

side the drop:

p = p0(t) + 2wmEn

∫ x

0

1

R

[
η

R
+ 1

R3

∂

∂(Et)

∫ x

0

R2dx

]n

dx,

w =
(

1 + 3n

n

)n

(7)

where p0(t) is the unknown pressure at the center of the drop.

Note that, at the steady state, the volumetric flow rate vanishes

everywhere. For an inviscid drop, m = 0, the pressure inside the

drop is uniform, and at steady-state it is also constant.
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