Accepted Manuscript

Liouville-Green Approximation: An Analytical approach to Study the Elastic Waves Vibrations in Composite Structure of Piezo Material

Abhinav Singhal, Sanjeev A. Sahu, Soniya Chaudhary

PII: S0263-8223(17)32381-4

DOI: https://doi.org/10.1016/j.compstruct.2017.10.031

Reference: COST 9006

To appear in: Composite Structures

Received Date: 28 July 2017

Revised Date: 21 September 2017 Accepted Date: 12 October 2017

Please cite this article as: Singhal, A., Sahu, S.A., Chaudhary, S., Liouville-Green Approximation: An Analytical approach to Study the Elastic Waves Vibrations in Composite Structure of Piezo Material, *Composite Structures* (2017), doi: https://doi.org/10.1016/j.compstruct.2017.10.031

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Liouville-Green Approximation: An Analytical approach to Study the Elastic Waves

Vibrations in Composite Structure of Piezo Material

Abhinav Singhal^a, Sanjeev A. Sahu^a and Soniya Chaudhary^{a*}

^aIndian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.

Abstract

This research article delves the study of surface waves in functionally graded piezoelectric

material (FGPM) clubbed between two dissimilar piezomagnetic (PM) media. The transference

of elastic waves in a composite structure is analyzed following the elastic wave theory of

magneto-electro-elasticity. Liouville-Green's (LG) approximation technique is used to solve the

differential equation. The exponential variation is assumed in material gradients of FGPM

stratum. It is noticed that the frequency of considered wave depends significantly on the material

gradient coefficients, which may be a crucial factor to regulate the dispersion characteristics of

functionally graded material (FGM) waveguides. Frequency equations have been obtained for

electrically open and short cases in determinant form. The profound effect of parameters like

material gradients (piezoelectric, dielectric and elastic) and width of the layers, on the phase

velocity of Love type wave are presented graphically. Moreover, it is noticed that the material

gradients also influences the electromechanical coupling factor. This influence has shown

through the graph. Different parametric curves are merged into a single figure to increase the

readability of the graphs. The magnetic potential function is derived analytically for all three

gradient factors of FGPM plate. Obtained results are matched analytically and graphically with

the established results.

Keywords: LG approximation, Mechanical Surface Waves, FGPM, PM, Coupled

electromechanical factor.

*Corresponding Author: Soniya Chaudhary

Download English Version:

https://daneshyari.com/en/article/6704867

Download Persian Version:

https://daneshyari.com/article/6704867

<u>Daneshyari.com</u>