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a b s t r a c t

A numerical investigation of an elasto-viscoplastic thixotropic fluid flowing through a 1:4 plane expan-
sion is performed, using a recently proposed constitutive equation. The conservation equations are solved
using a four-field Galerkin least-squares formulation in terms of the extra stress, pressure, velocity, and
structure parameter—a scalar quantity that represents the structuring level of the material microstruc-
ture. The focus is on determining the effect of thixotropy, elasticity and viscoplasticity on the topology
of yielded and unyielded regions of the expansion, on the field of structuring level, and on the field of
elastic strain. Relevant ranges of the relaxation time, yield stress, and thixotropy characteristic time
are investigated. The numerical results reveal significant effects of these parameters. The trends observed
are physically sound and in accordance with the related literature.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Thixotropic materials can be found both in nature and in indus-
trial applications, and are present in a large number of our daily
activities. Emulsions, gels, paints, drilling fluids, food products,
and mineral slurries are some examples of possibly thixotropic
materials. Typically these materials consist of dispersions possess-
ing a microstructure that governs their macroscopic behavior in
response to applied stresses. These structured materials exhibit a
complex non-Newtonian behavior, usually including viscoelastic-
ity, yield stress and thixotropy. Thixotropic materials present a
time delay between a change in the applied stress and the response
of the microstructure (breakdown or buildup). Many thixotropic
constitutive models have been proposed over the last decades,
but testing and validation information is rather scarce.

Mujumdar et al. [1] developed a model to describe the rheologi-
cal behavior of thixotropic fluids with yield stress and elasticity,
based on the kinetic process responsible for structure changes in

the fluid. A structure parameter k that indicates the level of struc-
ture of the material was defined. The rheological response is a
function of the material structure, and time effects are taken into
account in the evolution equation for the structure parameter. In
the constitutive equation proposed, the total stress is an arithmetic
mean of an elastic and a viscous term, weighted by the structure
parameter k. When the material structure breaks down, a viscous
behavior occurs, and elasticity decreases. The results obtained
were in fair agreement with frequency sweep experiments.

The thixotropic behavior of fluids was thoroughly reviewed by
Barnes [2] and Mewis and Wagner [3,4]. In these articles, typical
experiments and fluid responses are presented and analyzed, and
the relation between thixotropy and viscoelasticity, reversibility
and modeling are also discussed. It is observed that elasticity can
be present in thixotropic fluids, especially in the gel phase.
Mewis and Wagner [4] observed that different approaches have
been used for modeling thixotropy.

In this paper we analyze the performance of the constitutive
equation for elasto-viscoplastic thixotropic fluids proposed by de
Souza Mendes [5] in the flow through a plane expansion. This
geometry has been studied numerically and experimentally by
several authors and using some of the well known models for
purely viscous or viscoelastic fluids, e.g. Papanastasiou, Power-
law and Oldroyd-B models (e.g. [6–12]). In these studies, the effect
of different parameters (such as the Reynolds number, Yield
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number, and Deborah number) on the flow pattern and on the
head loss.

The constitutive equation employed in the present work is
based on the upper-convected Oldroyd-B constitutive equation,
modified to include structuring level dependence in the shear
modulus and in the relaxation and retardation viscosities. This
model is able to describe the typical characteristics of structured
fluids, such as stress overshoots in constant shear rate experi-
ments, non-monotonic flow curves, bifurcation of the viscosity
function, performs correctly in small and large amplitude oscilla-
tory flows, and is thermodynamically consistent [13,14]. The mod-
els proposed by de Souza Mendes [15], de Souza Mendes [5] differ
significantly from the ones previously available in the literature
and present a number of improvements, as thoroughly discussed
in de Souza Mendes and Thompson [16].

The structure parameter is governed by an evolution equation
that has no diffusion term, and hence it requires special care in
its numerical approximation. The numerical modeling of the gov-
erning equations is based on a four-field Galerkin least-squares
formulation in terms of the structure parameter, viscoelastic stress,
pressure, and velocity [17].

The formulation mentioned above is used to perform a numeri-
cal investigation of the steady flow of an incompressible structured
fluid flowing through a 1:4 plane expansion. Inertia is neglected,
and thixotropic and elastic effects are evaluated for a relevant
range of the governing parameters.

2. The analysis

2.1. The flow domain

The flow domain is illustrated in Fig. 1. It is composed of two par-
allel-plate channels assembled sequentially to form a planar sudden
expansion. The spacing between plates and axial length of the
upstream channel are 2Hu and Lu, respectively, and the correspond-
ing dimensions of the downstream channel are 2Hd and Ld (Fig. 1). In
the research reported here we focused our attention on the study of
the influence of the dynamical and rheological parameters, and so
we kept the geometry fixed. The following values of the geometrical
parameters were employed for all cases investigated:

Hd

Hu
¼ 4;

Lu

Hu
¼ Ld

Hu
¼ 50 ð1Þ

These axial lengths ensure that fully-developed flow conditions are
attained before the end of both channels, for all cases investigated.

2.2. Constitutive model

The mechanical behavior of the flowing material is described by
the constitutive model given in de Souza Mendes [5]. Its stress
equation is essentially the same as the one of the Oldroyd-B model,
except that the model parameters are allowed to vary with the
structure parameter k which is a measure of the structuring level
of the microstructure, such that k ¼ 0 when the material is fully
unstructured and k ¼ 1 when it is fully structured. For convenience
in the numerical scheme, here we employ the model in its split
form:

s1 þ hðkÞs
r

1 ¼ gsðkÞ _c ð2Þ

s2 ¼ g1 _c ð3Þ

s ¼ s1 þ s2 ð4Þ

In these equations, s is the extra stress tensor, i.e. it is the con-
stitutively determined part of the total stress T ¼ �p1þ s, where

1 is the unit tensor. The isotropic term �p1 is determined by solv-
ing the balance equations together with their boundary conditions.2

The tensor s1 is the viscoelastic stress, s2 is the viscous stress,
hðkÞ � gsðkÞ=GðkÞ is the structural relaxation time, gsðkÞ is the struc-
tural viscosity, g1 is the infinite-shear-rate viscosity (i.e. the viscos-
ity of the material in its fully unstructured state), GðkÞ is the
structural shear modulus, _c � ruþruT is the rate-of-strain tensor
field whose magnitude is _c �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr _c2=2

p
; u is the velocity vector field,

and s
r

1 stands for the upper-convected time derivative of s1, given by

s
r

1 ¼
ds1

dt
� s1 � ð$uÞ � ð$uÞT � s1 ð5Þ

where ds1=dt � @s1=@t þ u � rs1 is the material time derivative of
s1.

The structural viscosity gsðkÞ is given by

gsðkÞ � gvðkÞ � g1 ¼ g1
g0

g1

� �k

� 1

" #
ð6Þ

where g0 is the viscosity of the material in its fully structured state.
In many cases of real materials g0 is so large (maybe infinite) that it
cannot be determined experimentally. Nevertheless, even in such
cases a large but finite value of g0 is in general a good approx-
imation, and as far as numerical solutions are concerned, assuming
a large finite g0 is equivalent to a regularization, which is anyway

required in most numerical schemes. gvðkÞ � g1 g0=g1ð Þk is the vis-
cosity in the absence of elastic effects, i.e. it is the viscosity
(corresponding to the structuring level k) that would be observed
in an experiment at fixed elastic strain ( _ce ¼ 0). More details are
found in de Souza Mendes [15], de Souza Mendes [5] and de
Souza Mendes and Thompson [13].

The structuring-level dependent shear modulus GðkÞ is assumed
to be of the form

GðkÞ ¼ G0 exp m
1
k
� 1

� �� �
ð7Þ

where G0 represents the shear modulus of the material in its fully
structured state and m a dimensionless positive constant that gov-
erns the sensitivity of G to the structuring level.

The coefficient of the upper-convected time derivative of s1 that
appears in Eq. (2) is a characteristic time of the material that quan-
tifies its elastic memory when the structuring level is k:

hðkÞ � gsðkÞ
GðkÞ ¼

g1
g0
g1

� �k
� 1

� �
G0 exp m 1

k � 1
	 
� � ð8Þ

It is worth noting that hðkÞ can be measured by means of the
recently proposed QL-LAOS methodology [18].

To characterize the level of elasticity we adopt the time h0,
defined as

h0 �
gsð1Þ
Gð1Þ ¼

g0 � g1
G0

’ g0

G0
ð9Þ

where we used the fact that g1 � g0 for all elasto-viscoplastic
materials. That is, h0 is essentially the relaxation time of the mate-
rial in its fully structured state. We combine Eqs. (8) and (9) to write
hðkÞ in terms of h0 instead of G0:

hðkÞ � gsðkÞ
GðkÞ ¼ h0

g1
g0 � g1

� � g0
g1

� �k
� 1

exp m 1
k � 1
	 
� � ð10Þ

2 Note that p is not the mechanical pressure p � � 1
3 tr T , because s is not deviatoric.

In fact, p ¼ pþ 1
3 tr s.

F.B. Link et al. / Journal of Non-Newtonian Fluid Mechanics 220 (2015) 162–174 163



Download	English	Version:

https://daneshyari.com/en/article/670491

Download	Persian	Version:

https://daneshyari.com/article/670491

Daneshyari.com

https://daneshyari.com/en/article/670491
https://daneshyari.com/article/670491
https://daneshyari.com/

