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ABSTRACT

This paper explores the influence of large deformations on the propagation of acoustic waves in repetitive
network materials. The problem of elastic wave propagation in pre-deformed elastic materials and structures is
highly interesting in many applications. Both theoretical and numerical methods are developed in this con-
tribution in order to assess the influence of finite strains developing within repetitive networks on the evolution
of their band diagrams. An incremental scheme for the update of frequency and phase velocity of the computed
homogenized medium has been developed successively considering 1D and 2D structures; it incorporates an
update of the frequency and phase velocity of the propagating waves versus the effective density and the state of
finite deformation of the effective continuum used as a substitution medium for the initial repetitive network.
The applied deformation is shown to have significant effects on the wave frequency and phase velocity.
Especially, it is shown that the phase velocity for the hexagonal network strongly decreases under finite com-
pressive strains. The influence of the effective density on the dispersion relation and band diagrams under the
application of an incremental deformation over the lattice unit cell is shown.

1. Introduction

Structures having a periodical distribution of the geometry and
material properties of their constituents present interesting wave pro-
pagation properties, like the existence of frequency band gaps, local
resonances, and response directionality due to their anisotropy, left-
handedness, cloaking, or negative acoustic refraction. These unusual
acoustic properties are due to material and structural heterogeneities
associated to periodic modulations of the stiffness and inertial proper-
ties, resulting e.g. from modifications of the microstructural config-
uration. Moreover, the field of acoustic metamaterials has raised a
considerable interest due to the possibility of tailoring their micro-
structure to obtain various interesting effects like local resonances,
partial or full band gaps, see [12] and references therein. Soft meta-
materials have the capability to sustain large deformations, and as a
consequence they offer promising opportunities to adjust the acoustic
characteristics through the deformation.

Many techniques have been developed to predict the mechanical
properties of heterogeneous structures, and especially network mate-
rials, thereby bypassing the need to resolve the smallest spatial scale
[7]. Network materials find applications at different scales, and their
multiscale feature makes them especially interesting as reinforcements
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for composite materials, regarding both their static and dynamic
properties, as exposed in the recent special issue [10].

Homogenization methods aim at describing the overall response of
heterogeneous structures including composites and periodic structural
lattices in terms of their effective properties, as presented in the recent
contribution [46] and references therein. More recently, [19] extended
the linear model developed in [17,18] to construct the stress—strain
relation and the strain energy function for hyperelastic cellular mate-
rials with arbitrary symmetry. An alternative approach was proposed in
[46] using a computational homogenization method to derive a non-
linear constitutive model for network materials.

The incorporation of nonlinear aspects of wave propagation in
structures is necessary whenever large deformations occur
[3,30,28,32], but remains a considerable challenge. Two types of
nonlinearities may be present in a broad sense, namely material non-
linearities [23,24] and geometrical nonlinearities [31]. This last type of
nonlinearity is related to the evolution of the microstructure or struc-
ture configuration, for instance the change of configuration of a re-
petitive network, and it can be modeled as a succession of incremental
deformations associated to the modification of the structure geometry
[31]. The presence of a nonlinearity in periodic structures results in
amplitude-wave dependency in the dispersion relations; this opens new
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possibilities for a passive tuning of the dispersion band structure
through an amplitude-dependency of propagating waves, thereby going
beyond a mere control of the dynamic and acoustic properties of re-
petitive structures by the design [24] or by the application of an ex-
ternal stimulus.

A nonlinear periodic structure supports a variety of wave solutions
depending on wave amplitude, waves interactions, and type of non-
linearity, for example solitary wave solutions for Boussinesq type
equation, harmonic plane wave and discrete breathers
[5,39,42-45,40,33,34]. In [1], the authors analyze the dispersion re-
lations for axial and flexural elastic wave motion in homogeneous
beams subjected to finite strains. In [21], the authors study wave dis-
persion in a one-dimensional nonlinear elastic metamaterial; the large
elastic deformation provides the nonlinearity in the thin rod, whereas
the metamaterial behavior is associated with the dynamics of the local
resonators. [47] developed a numerical analysis improved by experi-
mental measures to show the evolution of the locally resonant band gap
under a nonlinear pre-deformation. [2] demonstrate the ability to use
deformation to transform phononic band gaps in periodic elastomeric
structures. In [25] the authors focus on materials which constitutive
law contains a cubic stress—strain nonlinearity, while [4] present an
analytical and numerical method to describe the propagation of non-
linear waves within a structure endowed with a square stress—strain
relationship.

The effect of pre-stress or pre-strain on wave propagation through
homogeneous anisotropic media has raised the interest of many au-
thors; the effect of preexisting finite elastic deformations on wave
propagation has been analyzed in [13,30] and the effects of incremental
deformations on a homogeneous continuum medium has been studied
in [11,6]. The initial deformation must be large enough to change the
geometry of the medium, since an infinitesimal initial deformation
would not affect the properties of the material based on the super-
position principle valid for small deformations. The incremental effec-
tive properties of pre-stressed homogeneous media undergoing large
deformation have been analyzed in [37,38], wherein the authors put
some restrictions on the strain energy function for elastic waves to be
able to propagate within the material.

In [20,22,27,29,36], the authors analyze the propagation of waves
in composites consisting of a small number of layers (two or three
layers) undergoing sufficiently large deformations.

It is worth mentioning that studies of nonlinear wave propagation in
structures essentially deal with one-dimensional (1D) systems, whereas
the nonlinear wave dynamics in multi-dimensional (2D and 3D) dis-
crete systems has not been thoroughly investigated so far.

In this paper, we analyze the dynamical properties of periodic
network materials subjected to finite strains, relying on dedicated
homogenization techniques developed to substitute the initial discrete
periodic lattice by an effective Cauchy continuum (relying on Bernoulli
beams). An incremental scheme for the update of network geometry,
mechanical response and frequency is set up successively in 1D and 2D
situations, based on the effective nonlinear medium obtained by
homogenization.
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Novel aspects presented in this paper are the following:

® An incremental scheme for the update of the frequency of the
homogenized medium is developed successively considering 1D and
2D network materials, based on the update of the tangent stiffness
matrix of the homogenized continuum;

e We study the influence of the geometrical nonlinearities developed
within the networks due to the imposed finite strains on the dis-
persion relations and band diagrams;

e We develop numerical schemes to simulate the influence of finite
strains for 2D repetitive lattice materials, illustrated by networks
which become auxetic under a kinematic control.

The incremental homogenization method at the basis of the dyna-
mical analysis is developed in Section 2. We analyze in Section 3 the
wave propagation in a one-dimensional context, representative of a
macroscopic beam incorporating a repetitive microstructure submitted
to pure tension. An extension of the method to the determination of the
incremental dispersion relations for 2D periodic structures is done in
Section 4, which demonstrates the impact of finite strains on partial
band gaps and phase velocity. We conclude this work in Section 5 with
a synthesis of the main effects of the imposed deformation on nonlinear
wave propagation.

Regarding notations, vectors and second order tensors are denoted
with boldface symbols. The transpose of a second order tensor A is the
second order tensor noted A”. The summation convention on repeated
indices is presently adopted, otherwise explicitly stated. The second
order identity tensor is denoted I.

2. Microscopic and mesoscopic nonlinear homogenization
problems

The adopted computational method of the effective nonlinear re-
sponse of periodic network materials relies on a two steps methodology:
the ground state effective moduli are first evaluated in the initial small
strains regime, followed by the evaluation of the subsequent nonlinear
response, based on the update of the lattice configuration (geometry)
when subjected to an increased kinematic loading imposed over the
identified network unit cell. We rely for the purpose of computing the
effective nonlinear response on the discrete homogenization method
(abbreviated DH method in the sequel) to replace the initially discrete
structure by a nonlinear elastic effective continuum.

2.1. Computation of the small perturbations homogenized elastic response of
the network

The general idea at the base of the method is the periodic repetition
of an elementary cell made of beams connected at nodes to define an
infinite network. Consider a finite 2D (surface) or 3D structure, para-
meterized by a small parameter ¢, defined as the ratio between a
characteristic length of the lattice unit cell to a characteristic length of
the entire network, scalar quantity L (Fig. 1). For a large enough

Fig. 1. Set of repetitive lattices parameterized by
a small parameter &.
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