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a b s t r a c t

This paper studies the vibration behaviours of laminated plates with consideration of the influences of
surface and interface energies. Geometric nonlinearity is taken into account in this model to obtain
the results of large amplitude vibrations. Approximate closed-form solutions for simply supported plates,
clamped plates and clamped circular plates are provided. Numerical results show that the surface/inter-
face effect can affect the dynamic behaviours of laminated plates at nanometer scale. This is especially for
nonlinear (large-amplitude) vibration. In addition, the ratio of the thickness to length of the plate, the
external load and number of layers also affect the surface/interface effects for large amplitude vibration.
This study is helpful for designing and examining the non-linear dynamic behaviour of laminated nano-
plates and nanoscale devices.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated nanoplates and nanofilms have wide applications in
different types of systems and devices, such as medical science,
astronavigation and electrical industry. The research of dynamic
behaviours of laminated nanoplates is necessary and helpful on
the design and development of nonoscale medical equipments,
detecting devices, electronic products and so on. Since the large
surface to volume ratio of nanoplates, the influences of size-
dependent effect caused by surface and interface energies on their
mechanical properties are so significant that cannot be neglected.
Accordingly, the classical mechanics formulations for laminated
plates need to be modified and the results need to be recalculated.
As an important mechanical property, vibration problems of nano-
plates taking into account the surface energy are always one of the
major research fields. Based on the fundamental works of surface
effect finished by Gurtin [1] and Cammarata [2–4], many research-
ers made further contributions to the vibration problem of nanos-
tructures. For example, Wang and Feng [5,6] assumed that the
surfaces of the nanoscale structures as zero thickness layer with
certain mechanical properties such as surface stiffness and surface
residual stress. They solved some linear size-dependent problems
of nanoscale beams and nanowires, such as buckling and vibration.
Eremeyev et al. [7] investigated the influences of surface tension on

the effective stiffness of nanoplates. By incorporating the Gurtin-
Murdoch continuum elasticity into the classical plate theory,
Ansari et al. [8–10] obtained the closed-form analytical solutions
for the free vibration of nanoplates and indicated that the influence
of surface effect relies on the sign and magnitude of the surface
elastic constants. In addition to the free vibration, the forced vibra-
tion of size-dependent nanoplates was also studied. For example,
Assadi [11] studied the forced vibration of a rectangular nanoplate
using a generalized form of Kirchhoff plate model. Gheshlaghi and
Hasheminejad [12] investigated the axisymmetric vibration of a
circular nanoplate with clamped edges and obtained the lowest
three natural frequencies as a function of the radius of the plates.

Nanoplates in either industrial applications or laboratorial
experiments are usually very thin. In otherwords,most of the nano-
plates have large flakiness ratios. Hence, the geometry nonlinearity
should be taken into account in vibration problems. Malekzadeh
et al. [13] modelled the free surfaces of the plates as two-
dimensional membranes adhering to the underlying bulk material
without slipping. Based on classical plate theory in conjunction
with nonlocal and surface elasticity theories, they studied the non-
linear frequency parameters of the skew nanoplates. Sahmani et al.
[14] developed a size-dependent higher-order shear deformable
circular plate model which considers the surface elasticity, surface
stress and surface density. Their research indicate that for a speci-
fied value of axial load in post buckling domain, increasing the plate
thickness may leads to higher vibration frequencies. Wang and
Wang [15] studied the surface effects on the nonlinear free
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vibration of nanoplates by using Hamilton’s principle and found out
the relationship between the normalized period and the thickness
of nanoplates. They also proposed a finite element model to tackle
the problems of bending and vibration problems of nanoplates [16].

Despite the insufficient and unsystematic research on nonlinear
vibrations of laminated nanoplates, the influences of interface
energy also needs to be well studied. According to the theory of
Cammarata et al. [2–4], the interface energies (between different
layers) and the surface energies (between the bulk and air) have
significant effects on the mechanical properties of nanoplates.
Early in 1998, researchers have already tried to find out the influ-
ences of interface energies in different ways. Nix and Gao [17] used
a microscopic model to show that the interface stresses do work
and affect the elastic straining of the interface. They also pointed
out that the interface stresses in the Ag/Ni multilayered systems
must be very large so that the system can be in physical equilib-
rium. The conclusion of interface stress obtained by Nix and Gao
[17] is quite similar to the expression of surface stress demon-
strated by Miller and Shenoy [18] in 2000. Chen et al. [19] focused
their research on theoretical analysis and derived the generalized
Young-Laplace equation of curved interfaces in nanoscale solids.
Recently, Asemi et al. [20] developed a nonlocal continuum plate
model for the transverse vibration of double- piezoelectric-
nanoplate systems taking into account the initial stress under an
external electric voltage and solved the relevant governing equa-
tions by differential quadrature method. All these research and
conclusions about interface effect mentioned above demonstrate
significant influences of interface energies on the mechanical prop-
erties and behaviours of multilayer nanoplates.

Due to the widely application of the multilayered nanoplates
and composite nanomaterials in modern industry and technology,
the associate subjects become more and more necessary. However,
the current studies on nonlinear vibration problems have been
focused on the single layer nanoplates. The achievements on non-
linear vibrations of laminated nanoplates are neither systematic
nor sufficient, especially on forced vibrations and analytical solu-
tions. Taking both surface/interface elasticity and surface/interface
residual stress into account, this paper will derive closed-form ana-
lytical formulations and solutions of the nonlinear free and forced
vibration problems of laminated nanoplates with different bound-
ary conditions, such as simply supported rectangular plates (SSSS),
clamped rectangular plates (CCCC) and clamped circular plates.
Based on the theoretical developments, some case studies are pro-
vided, together with the discussions and conclusions.

2. Formulations of the model

The constitutive relationship of surface can be expressed as the
following form [18]:

rs
ij ¼ cdij þ @c

@esij
ð1Þ

where rs
ij stands for surface stress tensor, c stands for surface

energy density and esij stands for the surface strain tensor, respec-
tively. In one-dimensional case such as nanobeams, the constitutive
relations reduce to [21]:

rs ¼ s0 þ Eses ð2Þ
where Es denotes stiffness and s0 is the residual surface stress of the
unstrained nanoplate, and can be read as [6]:

s0 ¼ cþ @c
@es

at es ¼ 0 ð3Þ

According to Eq. (2), the effect of surface energy can be sepa-
rated into two parts: surface residual stress and surface elasticity.
Wang and Feng [5,6] treated the surface as an isotropic elastic

lamella with constant stiffness but without thickness and worked
out the governing equations of size-dependent nanobeams by
mechanical equilibrium method. As a validation of their models,
Wang [22] obtained the same governing equations by variational
method.

The problem under consideration is a laminated nanoplate
illustrated in Fig. 1(a). The cross section of the laminated nanoplate
can be seen as a combination of N layers of bulk and N + 1 layers of
surface/interface. The thicknesses of each bulk layer are presented
as hk and the total thickness of the plate is h. For this laminated
nanoplate, the equivalent Young’s modulus E⁄ can be expressed as:

E� ¼ 1
h

XN
k¼1

EðkÞhk þ
XNþ1

k¼1

EsðkÞ
 !

ð4Þ

where hk is the thickness of the k-th layer, E(k) is the Young’s mod-
ulus of the k-th layer, and Es(k) is the Young’s modulus of the k-th
layer surface or interface. As shown in Fig. 1, the distances from
the neutral axis to each surfaces/interfaces are denoted as zk, which
can be expressed as

zk ¼ d�
XN
n¼k

hn forðk ¼ 1; . . . ;NÞ and zkþ1 ¼ d ð5Þ

where d is the distance from the neutral axis to the bottom of
the plate, and can be determined approximately fromXNþ1

k¼1

EsðkÞzk þ 1
2

XN
k¼1

EðkÞ

1� m2k
z2kþ1 � z2k
� � ¼ 0 ð6Þ

where mk is the Poisson’s ratio of the kth layer. We only consider
the properties of isotropic materials in this paper. Similarly to the
flexural rigidity of classical laminated plates [23], the equivalent
bending stiffness of laminated nanoplates can be given as

D� ¼
XNþ1

k¼1

EsðkÞz2k þ
1
3

XN
k¼1

EðkÞ

1� m2k
z3kþ1 � z3k
� � ð7Þ

3. Nonlinear vibration of laminated nanoscale plates

3.1. Rectangular plate

There are two main methods to obtain the governing equations
of nanoscale structures. One is the equilibrium of forces used by Fu
et al. [24], Wang and Feng [5,6] and He and Lilley [25], and the
other is the variational method derived by the energy conservation,
which was used by Wang and Wang [15] and Wang [22]. In most
applications, the thickness of a plate is small in comparison with
its smallest dimension, and hence Kirchhoff’s hypothesis may be
assumed to be valid. By this assumption, the tractions on plate sur-
face parallel to the reference plane of the plate are negligibly small
as compared with the inplane stress. Accordingly, the inplane dis-
placements are linear function of z. Therefore, the displacement of
the neutral plane of the plate at a certain point x and y at time t are
represented as:

u ¼ u0ðx; y; tÞ � z
@W
@x

; v ¼ v0ðx; y; tÞ � z
@W
@y

and W ¼ Wðx; y; tÞ
ð8Þ

where u and v are displacements of the neutral plane along the x
and y directions, respectively and W is the deflection of the plate.
Assuming there is no slipping between each layer in the model,
the non-zero strain in Von-Kármán type read

ex ¼ @u0
@x þ 1

2
@W
@x

� �2 þ zjx;

ey ¼ @v0
@y þ 1

2
@W
@y

� �2
þ zjy;

cxy ¼ @u0
@y þ @v0

@x þ @W
@x

@W
@y þ zjxy:

ð9Þ
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