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a b s t r a c t

The flow of a Maxwell fluid in a pipe generated by a pulsating pressure gradient is considered.
The problem is governed by two non-dimensional parameters, the Womersley number a and a Deborah
parameter c. We obtain a simple approximate solution in the limit of large a (pipe diameter much
larger than the viscous penetration depth) by solving the resulting boundary-layer problem through a
two scales perturbation technique, which also helps to understand qualitatively the structure of the flow
as c increases. This limit is of interest, for instance, for the blood flow in arteries. The main
qualitative differences between the Newtonian fluid flow (c ¼ 0) and the highly elastic fluid with
c ¼ Oð1Þ or larger are easily discussed from the found solution in terms of just two algebraic functions
of c.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The pulsating flow in pipes has been the subject of many studies
for a long time since it is of interest in many biological and techno-
logical systems and processes. In particular, analytical solutions for
the Newtonian fluid flow in a rigid infinite pipe due to a periodic
pressure gradient were considered by Womersley [1] in relation
to the blood flow in arteries, although similar solutions were
found earlier [2,3]. Since the blood is known to behave as a
non-Newtonian fluid [4], analytical solutions for several
non-Newtonian fluid models have also been obtained later for this
idealized pipe flow, as well as for some other more general pulsat-
ing pipe flows, not only in relation to blood flow, but to some other
physiological and industrial processes, many of them in relation to
the flow enhancement effect [5–14]. Some of these works, in addi-
tion to other ones for the viscoelastic fluid flow generated by an
oscillating plate [15,16], are cited below in connection to the solu-
tions described in the present work. Here we consider the flow in a
pipe due to a purely periodic pressure gradient of a fluid modelled
by a simple Maxwell model in order to analyse the interesting pul-
sating behavior of a viscoelastic fluid in the limit of large Womers-
ley numbers, of interest for the blood flow in arteries. To that end
we obtain simple analytical approximations of the velocity field
and the flow rate in that limit (Section 3) which allows for a better
understanding of the flow.

2. Formulation of the problem

We consider the unidirectional and incompressible flow in a cir-
cular pipe of infinite length and radius R, governed by the momen-
tum equation in the flow direction x,

q
@u
@t
¼ pl þ

1
r
@

@r
rsrxð Þ; ð1Þ

and boundary conditions

uðR; tÞ ¼ 0; uð0; tÞ–1; ð2Þ

where q is the fluid density, uðr; tÞ the longitudinal velocity, r the
distance from the axis of the pipe and t the time, when the pressure
gradient pl is a periodic function of time, e.g.,

plðtÞ ¼ A cosðXtÞ; ð3Þ

for given frequency X and amplitude A, and the fluid has a visco-
elastic behavior given by a simple Maxwell model for the shear
stress component srx [17],

srx ¼
g
k

Z t

�1
e�
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dt0; ð4Þ

where g is the zero-shear viscosity and k the relaxation time.
Defining the non-dimensional variables

n ¼ r
R
; s ¼ Xt; v ¼ qX

A
u; ð5Þ

and writing (3) as pl ¼ R AeiXt
h i

, Eqs. (1)–(4) can be written as
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wð1; sÞ ¼ 0; wð0; sÞ–1; ð7Þ

with

v ¼ R½w�; ð8Þ

and where we have defined the non-dimensional parameters

a � Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ðqXÞ

p ; c � kX; ð9Þ

which are usually called Womersley and Deborah numbers, respec-
tively. We look for periodic solutions in the form

wðn; sÞ ¼ f ðnÞeis: ð10Þ

Particularly, we look for simple analytic approximate solutions in
the limit a� 1 with c ¼ Oð1Þ or larger. Note that this limit of large
Womersley number (a� 1) corresponds to a ‘wide’ pipe, in the
sense that its radius R is much larger than the viscous penetration
depth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ðqXÞ

p
. It must be emphasized that we only consider here

the laminar, unidirectional flow in a cylinder of infinite length. The
hydrodynamic stability of the solutions found is not considered,
and it is known that the viscoelastic fluid flow in a pipe may be
hydrodynamically unstable even for negligible inertial forces
(e.g., [18]).

3. Solution in the limit a� 1

3.1. Review of the exact solution for any a

Substituting (10) into (6) and (7) one gets

f 00 þ f 0

n
� ia2ð1þ icÞf ¼ �a2ð1þ icÞ; ð11Þ

f ð1Þ ¼ 0; f ð0Þ –1; ð12Þ

where primes denote differentiation with respect to n. The analyti-
cal solution to this problem can be written as

f ðnÞ ¼ i
J0ða

ffiffiffiffiffiffiffiffiffiffi
c� i

p
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Þ
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 !
; ð13Þ

where J0 is the zero order Bessel function of the first kind [19]. Thus,
the non-dimensional velocity field can be written as

vðn; sÞ ¼ R
eis

i
1� J0ða

ffiffiffiffiffiffiffiffiffiffi
c� i

p
nÞ

J0ða
ffiffiffiffiffiffiffiffiffiffi
c� i

p
Þ

 !" #
: ð14Þ

This solution was found, in dimensional form, by Broer [5], and con-
tains that for a Newtonian fluid when c ¼ 0, found earlier by some
other authors in several forms [2,3,1]:

vðn; sÞ ¼ R
eis

i
1� J0ðani3=2Þ

J0ðai3=2Þ

 !" #
: ð15Þ

Actually, Broer [5] also obtained the next corrections to this
expression due to the viscoelastic behavior by expanding (14) for
c� 1.

3.2. Approximate non-dimensional velocity field for a� 1 from the
method of two scales

Here we are interested in the behavior of the flow for any c
when a is large, which presents some interesting features worth
to be discussed using a simpler and more explicit expression than
(14).

For large a, viscous effects are confined in a narrow region close
to the pipe wall; i.e., the solution presents a boundary-layer

structure near n ¼ 1. Thus, the approximate solution in this limit
can be obtained either by using the asymptotic limit of the Bessel
functions in (14) for a� 1, or by solving (11) approximately using
a singular perturbation technique. Both methods are obviously
equivalent. Since the perturbation technique applied to the original
equation and boundary conditions is both analytically simpler and
physically more informative about the structure of the solution, we
adopt here this second approach.

Writing (11) as

bf 00 þ b
n

f 0 � if ¼ �1; ð16Þ

with

b ¼ 1� ic
a2ð1þ c2Þ ; ð17Þ

we look for solutions when jbj � 1. In this limit, the solution has a
boundary layer near n ¼ 1 of thickness b1=2. To obtain the inner
solution inside this boundary layer one uses the appropriate inner
variable

ni ¼
n� 1
b1=2 ; ð18Þ

and matches it to the external solution. It is easily found from (16)
that this external solution is f e ¼ �i in all the orders of the expan-
sion in powers of b. Thus, the external solution for the velocity, valid
to any order in b, is, according to (8) and (10),

ve ¼ R½�ieis� ¼ sin s: ð19Þ

Note that this solution, valid in the bulk of the pipe flow but not in
the vicinity of the pipe wall n ¼ 1, is not in phase with the pressure
gradient oscillation cos s, having a phase shift of p=2.

To obtain a uniform valid solution across all the pipe section
one has to match asymptotically the inner solution in terms
of ni, valid near n ¼ 1, to the external solution f e ¼ �i. However,
it turns out that the inner asymptotic expansion contains
secular terms and fails to converge appropriately, so that the
matched asymptotic expansions technique fails. To avoid this, we
use a method of two scales to solve the boundary layer problem
[20]. We define

f ðnÞ ¼ f ðne; niÞ; ð20Þ

where ne ¼ n and ni is defined in (18). Using the chain rule to obtain
df=dn and d2f=dn2 and substituting into (16) one obtains

b
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b
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 !
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@f
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� �
� if ¼ �1;

ð21Þ

which has to be solved with the boundary conditions

f ð1;0Þ ¼ 0; f ð0;�b�1=2Þ–1: ð22Þ

Substituting the asymptotic expansion

f � f 0 þ b1=2f 1 þ . . . ; ð23Þ

into (21), at the lowest order one has

@2f 0

@n2
i

� if0 ¼ �1; ð24Þ

whose general solution is

f 0 ¼ C01ðneÞe
1þiffiffi

2
p ni þ C02ðneÞe�

1þiffiffi
2
p ni � i; ð25Þ

where C01 and C02 are arbitrary functions of ne to be obtained at the
next order in the expansion.

At the next order b1=2 one has
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