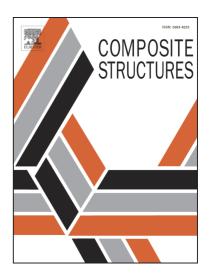
Accepted Manuscript

Development of a composite prototype with GFRP profiles and sandwich panels used as a floor module of an emergency house

Hassan Abdolpour, Julio Garzón-Roca, Gonçalo Escusa, José M. Sena-Cruz, Joaquim A.O. Barros, Isabel B. Valente


PII: S0263-8223(16)30693-6

DOI: http://dx.doi.org/10.1016/j.compstruct.2016.05.069

Reference: COST 7482

To appear in: Composite Structures

Received Date: 2 February 2016
Revised Date: 2 May 2016
Accepted Date: 23 May 2016

Please cite this article as: Abdolpour, H., Garzón-Roca, J., Escusa, G., Sena-Cruz, J.M., Barros, J.A.O., Valente, I.B., Development of a composite prototype with GFRP profiles and sandwich panels used as a floor module of an emergency house, *Composite Structures* (2016), doi: http://dx.doi.org/10.1016/j.compstruct.2016.05.069

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Development of a composite prototype with GFRP profiles and sandwich panels used as a floor module of an emergency house

Hassan Abdolpour^{a, 1}, Julio Garzón-Roca^b, Gonçalo Escusa^a,

José M. Sena-Cruz^a, Joaquim A.O. Barros^a, Isabel B. Valente^a

^a ISISE, University of Minho, Guimarães, Portugal

^b Department of Geological and Geotechnical Engineering, Universitat Poliècnica de València, Valencia, Spain

Abstract

A series of experimental tests carried out on a composite prototype to be used as a floor module of an emergency house is presented in this paper. The prototype comprises a frame structure formed by GFRP pultruded profiles,

and two sandwich panels constituted by GFRP skins and a polyurethane foam core that configures the floor slab.

The present work is part of the project "ClickHouse - Development of a prefabricated emergency house

prototype made of composites materials" and investigates the feasibility of the assemblage process of the

prototype and performance to support load conditions typical of residential houses. Furthermore, sandwich

panels are also independently tested, analysing their flexural response, failure mechanisms and creep behaviour.

Obtained results confirm the good performance of the prototype to be used as floor module of an emergency

housing, with a good mechanical behaviour and the capacity of being transported to the disaster areas in the form

of various low weight segments, and rapidly installed. Additionally, finite element simulations were carried out

to assess the stress distributions in the prototype components and to evaluate the global behaviour and load

transfer mechanism of the connections.

Keywords: emergency house; composite materials; GFRP pultruded profiles; sandwich panels; GFRP skins; PU

foam core.

1. Introduction

Typically, after a natural disaster, the surviving communities are accommodated in temporary dwellings for recovery [1]. Availability of temporary housing is crucial since it allows people to quickly commence their daily activities such as school, working and cooking [1-3]. In the field of temporary houses design, one of the critical

¹ Corresponding author. Tel.: +351-253-510-200; fax: +351-253-510-217

E-mail address: Hassan.abdolpour@gmail.com (H. Abdolpour)

1

Download English Version:

https://daneshyari.com/en/article/6705194

Download Persian Version:

https://daneshyari.com/article/6705194

<u>Daneshyari.com</u>