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a b s t r a c t

The dynamics of functionally graded micropolar plates is considered. The derivation process is based on
power series expansions in the thickness coordinate. Using the three-dimensional equations of motion
for micropolar continuum, variationally consistent equations of motion and end boundary conditions
are derived in a systematic fashion up to arbitrary order. Numerical results are presented for simply
supported plates using different material distributions for both low and high order truncation orders.
These results illustrate that the present approach renders benchmark solutions provided higher order
truncations are used, and act as engineering plate equations using low order truncation.
� 2016 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Functionally graded (FG) materials are composite materials
made of two (or more) phases of material constituents, where
the phase distribution varies continuously. The most used group
of FG materials consists of ceramic and metal phases. Such materi-
als were developed in the mid 1980s where the strength of the
metal and the heat resistance of the ceramic made these materials
well suited for high-temperature environments. FG materials also
possess a number of further advantages compared to other inho-
mogeneous materials such as improved residual stress distribu-
tion, higher fracture toughness, and reduced stress intensity
factors. Hence, FG materials are nowadays used in many different
fields of engineering [1,2].

FG plates using classic elastic continuum theory have been
studied extensively in recent decades. Among these, work on FG
plates using three dimensional or higher order two dimensional
theories are found in [3–9]. Several comprehensive surveys on var-
ious aspects of FG plate modeling have been reported [10–13].

In micropolar elasticity theory the classical continuum model is
extended to properly deal with microscale effects which affects the
mechanical response e.g. in granular or fibrous materials. In addi-
tion to the classical theory where three translational degrees of
freedom are assigned to each material point, the micropolar theory
adds three rotational degrees of freedom to each material point.

This results in a so called couples stress tensor in addition to the
regular stress tensor, where both these tensors are nonsymmetric
in the general case. Among the different existing micropolar theo-
ries based on the Cosserat work [14], the version developed by
Eringen [15] is perhaps the most popular. There are several work
on micropolar plates adopting Eringen’s theory [16–23], see also
the review paper [24].

The present work on FG micropolar plates is an extension to the
work on dynamic equations for homogeneous micropolar plates
[23]. The method used renders a hierarchy of micropolar FG plate
equations in a consistent and systematic fashion up to arbitrary
order. The method is mainly based on the works on homogeneous
plates that are isotropic [25], anisotropic [26] and piezoelectric
[27], and has also been employed for functionally graded isotropic
plates [3] adopting classic elastic continuum theory. The interest
towards FG structures taking microscale effects into account has
developed over the last few years. The majority of studies are
based on the modified couple stress theory [28–32] and other
alternative theories [33,34]. However, there are to our knowledge
no work on FG plates using the more general micropolar theory,
and thus this work may contribute to fill that gap.

The derivation process for developing plate equations for FG
isotropic micropolar plates is here based on employing a system-
atic power series expansion approach using the three dimensional
equations of motion for micropolar continuum. Displacement and
micro-rotation fields, as well as material parameters, are expanded
in a power series in the thickness coordinate of the plate. From
these expanded fields, the stress and couple stress are obtained
on power series form in terms of the expansion functions of the
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displacements and micro-rotations. Furthermore, by using the
equations of motion for micropolar elasticity, recursion relations
are constructed. These are used to express all expansion functions
in terms of the lowest order expansion functions. Thus all fields can
be expressed in these lowest order expansion functions without
performing any truncations. Subsequently boundary conditions
on the upper and lower surface of the plate are stated on power
series form. These boundary conditions represent a set of scalar
equations, written in terms of the lowest order expansion func-
tions, and constitute the complete set of partial differential plate
equations. Using variational calculus, the edge boundary condi-
tions for each edge surface are obtained in an equally systematic
manner. The resulting sets of plate equations may be truncated
to any desired order. Numerical results are presented for simply
supported plates where the material distribution is varying using
a power law through the plate thickness. The results comprise
eigenfrequencies and cross sectional fields using different trunca-
tion orders. The low order cases may be used as approximate engi-
neering plate theories while the higher order theories act as
benchmark theories converging to the exact 3D solution.

2. Theory of linear micropolar elasticity

Consider an isotropic micropolar continuum according to Erin-
gen’s theory [15]. The equations of balance of momentum and
moment of momentum, written in cartesian coordinates, are
expressed as

tkl;k ¼ q€ul; ð1Þ
mkl;k þ �lkmtkm ¼ qjlk€/k; ð2Þ
in absence of body forces and body couples. Here tkl is the stress
tensor, mkl is the couple stress tensor, ul is the displacement vector,
/k is the micro-rotation vector, q is the density, jlk is the microiner-
tia tensor and �lkm is the permutation symbol. Indices that follow a
comma indicate partial differentiation. The surface tractions are
defined in accordance to

tl ¼ tklnk; ð3Þ
ml ¼ mklnk; ð4Þ
where nk is an outward pointing normal surface vector.

The micropolar strain tensors ekl and ckl are defined by

ekl ¼ ul;k þ �lkm/m; ð5Þ
ckl ¼ /k;l: ð6Þ
These strain measures are related to the stress and couple stress
tensors through the constitutive relations

tkl ¼ kemmdkl þ ðlþ jÞekl þ lelk; ð7Þ
mkl ¼ acmmdkl þ bckl þ cclk; ð8Þ
where dkl is the Kronecker delta, k and l are Lamé parameters while
a; b; c and j are micropolar elastic moduli. Consider from now on
spin-isotropic materials where the microinertia reduces to a scalar
quantity, jkl ¼ jdkl.

3. Series expansion and recursion relations

A hierarchy of approximate equations for isotropic plates that
are FG in the thickness direction is to be derived in a consistent
manner based on governing equations for a micropolar continuum
as described in Section 2. Consider a plate of thickness 2h using a
cartesian coordinate system fx; y; zg, where the in plane x and y
axes are along the middle plate plane at z ¼ 0. The components
of the displacement field and micro-rotation field are denoted
fu1;u2;u3g and f/1;/2;/3g respectively. The derivation procedure

of the plate equations is based on the assumption that each com-
ponent of the displacement field and micro-rotation field can be
expanded in a power series in the thickness coordinate z according
to

ulðx; y; z; tÞ ¼
X1
n¼0

znuðnÞ
l ðx; y; tÞ; ð9Þ

/lðx; y; z; tÞ ¼
X1
n¼0

zn/ðnÞ
l ðx; y; tÞ; ð10Þ

for l ¼ 1;2;3. As for the material parameters varying in the thick-
ness direction, these are expanded in Taylor series [3] as

f ðzÞ ¼
X1
n¼0

znf ðnÞ: ð11Þ

Here, f covers both traditional elastic parameters fq; k;lg and the
micropolar parameters fj;a;b; c; jg, see further discussions in
Section 5.

By using the series expansions Eqs. (9)–(11) into the deforma-
tion relations Eqs. (5) and (6), the stress and couple stress expres-
sions from the constitutive relations Eqs. (7) and (8) are written on
power series form

tkl ¼
X1
n¼0

zntðnÞkl ; ð12Þ

mkl ¼
X1
n¼0

znmðnÞ
kl : ð13Þ

Each power series term may thus be expressed in terms of displace-
ments and rotations through

tðnÞkl ¼ kHLjuj
� �

ndkl þ lHðLluk þ LkulÞ½ �n þ jHðLkul þ �lkm/mÞ½ �n;
ð14Þ

mðnÞ
kl ¼ aHLj/j

� �
n
dkl þ bHLl/k½ �n þ cHLk/l½ �n: ð15Þ

Here the product rule for power series are denoted

aHb½ �n ¼
X
i¼0

naðiÞbðn�iÞ
: ð16Þ

Moreover, operators Lk acting on the series expanded fields are
introduced in order to simplify the expressions according to

Lkg
ðnÞ
l ¼

@xg
ðnÞ
l if k ¼ 1;

@yg
ðnÞ
l if k ¼ 2;

ðnþ 1Þgðnþ1Þ
l if k ¼ 3;

8>><
>>: ð17Þ

where gðnÞ
l is any of the expansion fields in Eqs. (9)–(11). Hence Lk

for k ¼ 3 increases the index of gðnÞ
l and multiplies with the new

index, in this case nþ 1. Note the shorthand form @x and @y used
to denote partial derivatives with respect to x and y.

Now that the material parameters, displacements, micro-
rotations, stresses and couple stresses are all expressed on power
series form according to Eqs. (9)–(13), these fields are to be used
in the equations of motion, Eqs. (1) and (2). Collecting terms of
equal power in z in the equations of motion results in recursion for-
mulas for each displacement and micro-rotation field according to

ðnþ 1Þ ðlþ jÞHL3ul½ �nþ1 þ ðnþ 1Þ ðkþ lÞHL3u3½ �nþ1d3l

¼ qH€ul½ �n � ðlþ jÞHð@2
x þ @2

yÞul

h i
n
� Ll kHð@xu1 þ @yu2Þ

� �
n

� lHLlð@xu1 þ @yu2Þ
� �

n � ðnþ 1Þ lHLlu3½ �nþ1ð1� d3lÞ
� kHLlL3u3½ �nð1� d3lÞ � �ijkLj jH/k½ �ndli; ð18Þ
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