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a b s t r a c t

Analytical expressions for the velocity profiles of different types of generalized Newtonian fluids are
derived for fluids traversing a porous domain enclosed between two stationary parallel plates, as well
as for free-flow over and flow through a porous domain. In the first scenario a Brinkman-like equation
was solved where a no-slip boundary condition was enforced at the macroscopic external boundaries.
In the composite domain, analytical expressions have been derived by matching Stokes flow to the solu-
tion of the Brinkman equation after assuming a continuity in the shear stress at the fluid-porous inter-
face. For shear thinning and shear thickening fluids, in both scenarios, an inverse approach had to be
considered to obtain the average velocity profile within the porous region. The permeability of a porous
structure for a specific traversing fluid subjected to a specific pressure gradient is approximated by means
of a representative unit cell that is applicable to an infinite porous region. The validity of this analytical
modeling approach is established by comparing it to numerical results obtained from an in house devel-
oped numerical code.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper analytical expressions are derived for the average
velocity profiles of generalized Newtonian fluids traversing a por-
ous medium subjected to different macroscopic exterior boundary
conditions. Firstly a porous medium restricted between two sta-
tionary parallel plates is considered and secondly a large porous
domain adjacent to an open channel is considered where flow
occurred in and over the porous region. The study of such flow
phenomena has practical applications in fields such as geophysics,
mechanical and process engineering, as well as physiology. Such
analytical expressions are also very useful for validating numerical
simulations. Numerical solutions to the average velocity profiles
are also obtained by means of an in house developed numerical
code.

Numerous analytical studies have been published on Newto-
nian fluids traversing a composite channel (a porous domain adja-
cent to a free-flow channel). We shall briefly review earlier work
here. In a study by Beavers and Joseph [3], Stokes flow was
assumed in the free-flow channel and Darcy’s law was assumed
to be adhered to in the porous domain below a transition region
of unknown width. The velocity profile within the transition layer

was not modeled analytically. They observed from experimental
results that the velocity at the fluid-porous interface, uq

xa (see
Fig. 10), is much greater than the Darcy velocity, uq

D. The following
semi-empirical ad hoc boundary condition was enforced at the xa-
boundary:
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xa � uq
D

� �
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where aBJ is a fluid independent, empirical slip coefficient that char-
acterizes the local geometry of the porous structure at the interfa-
cial layer.

In a later study, Neale and Nader [13] completed the average
velocity profile of Beavers and Joseph [3] by employing the Brink-
man equation in the transition layer. They assumed a shear stress
continuity at the xa-interface:
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: ð2Þ

In Eq. (2), lx denotes the effective shear rate independent viscosity
of a Newtonian fluid within a porous medium that differs from the
fluid viscosity, l. There is therefore a shear rate discontinuity at the
interface.

To obtain a continuous velocity profile across the xa-interfacial
boundary, Ochoa-Tapia and Whitaker [14] introduced a stress-
jump boundary condition by incorporating the excess stresses
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initiated by the homogenous assumption made regarding the
porous structure up to the xa-boundary in the volume averaging
procedure. Applying a volume averaging technique, the following
boundary condition was enforced at the fluid-porous interface:

duq
a

dy
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e
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xa: ð3Þ

In Eq. (3), bOW is the empirically adjustable stress-jump coefficient
introduced by Ochoa-Tapia and Whitaker [14]. The constant poros-
ity, e, denotes the porosity of the homogenous x-region of the por-
ous domain. Comparing Eqs. (2) and (3) it therefore follows that
lx ¼ l=e. The shear rate discontinuity resulting from the condition
enforced by Neale and Nader [13] at the fluid-porous interface (Eq.
(2)) therefore increases as the porosity decreases.

In this study, the method of Neale and Nader [13] is followed in
association with volume averaging for the modeling of purely vis-
cous non-Newtonian fluids. In this paper the excess stresses men-
tioned above are neglected and homogeneity is assumed up to the
fluid-porous interface.

2. Analytical background

2.1. Governing equation on continuum level and the fluid model

Utilizing the continuity equation for mass conservation, the
momentum transport equation governing flow on a continuum
level is given by

@

@t
ðqvÞ þ $ � ðqvvÞ ¼ �$pþ $ � sþ Fb: ð4Þ

Here q denotes the density of the fluid, p the static pressure, s is the
second order shear stress tensor and Fb denotes the body forces, e.g.
gravitation. In this study the fluid is assumed to be incompressible
and the density is assumed to be constant with respect to both time
and space. Since only generalized Newtonian fluids are considered
in this paper, the shear stress may be written in the following form:

s ¼ gðj _cjÞ _c: ð5Þ

Here _c denotes the strain rate tensor and g is the apparent viscosity
which is a function of the magnitude of the strain rate tensor that is
defined as

j _cj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð _c : e_cÞr

: ð6Þ

The tilde denotes the transpose of the second order tensor.
A Herschel–Bulkley fluid is a viscoplastic fluid that may exhibit

either shear thinning or shear thickening behavior once the yield
stress has been exceeded. Under simple shearing conditions, this
fluid model may be expressed as follows:

_c ¼ 0 for jsj 6 jsyj;
s ¼ ðjsyj þ Kj _cjnÞsignð _cÞ for jsj > jsyj:

ð7Þ

The scalar shear stress, s, is defined such that signðsÞ ¼ signð _cÞ,
where _c represents the shear rate. In Eq. (7), jsyj is the yield stress,
K the consistency index and n denotes the behavior index. If the
behavior index is greater than unity, the fluid is shear thickening
and if it is less than unity (n > 0), the fluid is shear thinning. The
Herschel–Bulkley fluid model reduces to that of a power law fluid
if jsyj ¼ 0 and to a Bingham plastic fluid model if n ¼ 1. If both these
conditions are applicable, this fluid model reduces to that of a
Newtonian fluid where K then represents the constant viscosity, l.

2.2. Volume averaged governing equation for flow through porous
media

Standard volume averaging techniques [1] are implemented. Eq.
(4) is averaged over a representative elementary volume (REV),
where its volume, Uo, consists of both fluid and solid volumes.
Assuming that the porous structure is rigid, that the fluid is homo-
geneous and that the no-slip boundary condition is satisfied at the
interstitial fluid-solid interfacial surfaces, Sfs, the volume averaged
momentum transport equation follows:
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ZZ
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ðfpgn� n � g$vÞdS þ hFbio: ð8Þ

In Eq. (8), bu is the intrinsic phase average of the velocity and v
denotes the velocity on a continuum level in the interstitial pores.
The unit vector n is directed towards the solid phase at the fluid–
solid interfaces. The intrinsic phase average and the phase average
of a quantity are denoted by hif and hio respectively. The deviation
at a point with respect to the intrinsic phase average is denoted
by fg.

In the derivation of Eq. (8), following Bear and Bachmat [2], the
momentum dispersion term was assumed to be negligible in com-
parison to the macroscopic convection rate (the second term on
the left hand side of Eq. (8)). It is also assumed here that

hgif h$v þg$v io � hfggf$v þg$vgio: ð9Þ

Eq. (8) will be applied to flow through an infinite porous region
(Section 3), fluid traversing a porous region enclosed between two
parallel plates (Section 4) and flow through a composite channel
consisting of an infinite porous domain located adjacent to a free-
flow channel (Section 5).

3. An infinite porous region

3.1. Analytical models

With reference to Cloete and Smit [7], a representative unit cell
(RUC) is used to find an estimate of the apparent permeability for
different fluid types traversing an infinite porous domain or a setup
where the effects due to the macroscopic boundaries are assumed
to be negligible. This method was referred to as secondary averag-
ing in the said study.

If the phase average of the velocity (in this paragraph, also the
superficial velocity), hvio, is assumed to be time independent and
uniform, since the density of the considered fluid is constant, Eq.
(8) simplifies to

�$hpif þ hFbif ¼
1
U f

ZZ
Sfs

ðfpgn� n � g$vÞdS; ð10Þ

where U f denotes the volume occupied by fluid in the REV, i.e.
U f ¼ eUo. From here on, for flow through a homogeneous porous
medium where the effects of the external boundaries are negligible,
the superficial velocity is denoted by bqH. In the low Reynolds num-
ber Darcy regime, Eq. (10) may be written in the following form:

�$hpbif ¼
K

KD
qn�1

H
bqH; ð11Þ

where the b-subscript implies that the body forces are incorporated
as part of the pressure gradient. In Eq. (11), KD denotes the apparent
permeability which, for non-Newtonian fluids, is not only
dependent on the characteristics of the porous medium (therefore
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