
Buckling analysis of laminated plate structures with elastic edges
using a novel semi-analytical finite strip method

Qingyuan Chen a, Pizhong Qiao a,b,⇑
a State Key Laboratory of Ocean Engineering, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, School of Naval Architecture, Ocean and Civil
Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
bDepartment of Civil and Environmental Engineering, Washington State University, WA 99164-2910, USA

a r t i c l e i n f o

Article history:
Received 10 February 2016
Revised 21 April 2016
Accepted 2 May 2016
Available online 3 May 2016

Keywords:
Buckling
Finite strip method
End boundary conditions
Semi-analytical solution

a b s t r a c t

A novel semi-analytical finite strip method is presented for buckling analysis of composite plate struc-
tures with boundary edges elastically supported. A set of unique Fourier series functions is introduced
to represent the longitudinal variation of deflection along a strip, and they are capable of handling elastic
edges with translational and rotational spring supports. The proposed hybrid method overcomes limita-
tion of classical finite strip method only capable of handling simple end boundary conditions of struc-
tures, and it avoids the ill-conditioning when a set of standard Fourier series functions is used for
buckling analysis. Accuracy and validity of the proposed method are demonstrated by the convergence
and comparative studies in comparison with the numerical finite element method. As an example, the
present method is applied to buckling analysis of a composite Z-stiffened panel under pure shear, and
its capability and efficiency of treating different edge conditions in the panel skin and stiffeners are
illustrated.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The semi-analytical finite strip method has been proposed by
Cheung [1,2] for several decades, and there have been a great
amount of developments in the method itself and in its application
[3–19]. However, this technique is fraught with limitation of only
handling simple end boundary conditions of structures (i.e., both
ends simply supported, both ends clamped, one end simply sup-
ported and the other end clamped, both ends free, or one end
clamped and the other end free). The structures with the end either
simply supported, clamped or free are extreme cases; while in real-
ity, the end edges of structures are usually elastically supported or
restrained by adjacent components. When it comes to these com-
plicated and more realistic end boundary conditions, many schol-
ars turn to the already developed spline finite strip method [2].

Many researchers have investigated the vibration of plates with
elastically-restrained boundary condition edges using series solu-
tions. For example, Li et al. [20] developed an analytical method
for vibration analysis of rectangular isotropic plates with
elastically-restrained edges, in which the displacement solution

is expressed as a combination of a standard Fourier cosine series
and several auxiliary closed-form functions. Beslin and Nicolas
[21] proposed a hierarchical set with trigonometric functions for
flexural vibration of rectangular isotropic plates. Barrette [22] used
the hierarchical trigonometric functions of Beslin and Nicolas [21]
as local trial functions in prediction of stiffened plate vibration, and
the local functions are defined on the plate domain present
between consecutive stiffeners. Then, Dozio [23–25] used this set
of trigonometric functions with the Ritz method for general vibra-
tion of rectangular isotropic plates and in-plane vibration analysis
of isotropic and composite plates, and all the plates considered
have the arbitrary elastic boundaries. However, the set of trigono-
metric functions proposed by Li et al. [20] and Beslin and Nicolas
[21] cannot be used for buckling analysis of isotropic and compos-
ite rectangular plates with complex and restrained boundary con-
ditions, because of ill-conditioning. While in the authors’ opinion,
the incapability of considered trigonometric functions for buckling
analysis is caused by many terms in the geometric matrices being
zero.

In this paper, a novel semi-analytical finite strip method is pre-
sented for buckling analysis of laminated composite structures
under shear and compressive loading, in which the longitudinal
series functions are replaced by the set of trigonometric functions
as proposed by Beslin and Nicolas [21]. The proposed novel semi-
analytical finite strip method retains the advantages of the finite
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strip method (FSM), and at the same time it overcomes the short-
coming of the existing FSM only capable of handling the classical
and simple end boundary condition of structures; more important,
the hybrid method allows the use of the set of trigonometric func-
tions proposed by Beslin and Nicolas [21] without ill-conditioning.

2. Theoretical formulations

Consider a typical finite strip element with the length L and the

width Be (Fig. 1). kTy0 and kTy1 are the translational (vertical) spring
stiffness coefficients along the ends of the finite strip element of

y ¼ 0 and y ¼ L, respectively; kRy0 and kRy1 are the rotational spring
stiffness coefficients along the ends of the finite strip element of
y ¼ 0 and y ¼ L, respectively.

Based on the Classical Laminated Plate Theory (CLPT), the dis-
placements of the middle surface of the plate uðx; yÞ, vðx; yÞ and
wðx; yÞ are expressed by the interpolation polynomial function in
x-direction and smooth series functions in y-direction:

u ¼
Xr
m¼1

Ym
u fCugfdgem

v ¼
Xr
m¼1

Ym
v fCvgfdgem

w ¼
Xr
m¼1

Ym
w fCwgfdgem

ð1Þ

where fdgem is a vector representing the mth term nodal displace-
ment parameters at the nodal lines of the finite strip element. For
the low order finite strip with three nodal lines (LO3, see Fig. 1),
the following expression is held:

fdgem ¼ fuim v im wim him ukm vkm wkm hkm ujm v jm wjm hjmgT
ð2Þ

where him, hjm and hkm are the rotation parameters at the three lon-
gitudinal nodal lines, respectively, and they are defined as
h ¼ @w=@x. fCug, fCvg, fCwg are the transverse interpolation shape
functions, and they are given by

fCug ¼ fC1 0 0 0 C2 0 0 0 C3 0 0 0 g
fCvg ¼ f0 C1 0 0 0 C2 0 0 0 C3 0 0 g
fCwg ¼ f0 0 C4 C5 0 0 C6 C7 0 0 C8 C9 g

;

where, C1 ¼ 1� 3�xþ 2�x2, C2 ¼ 4�x� 4�x2, C3 ¼ ��xþ 2�x2, C4 ¼ 1�
23�x2 þ 66�x3 � 68�x4 þ 24�x5, C5 ¼ �x� 6�x2 þ 13�x3 � 12�x4 þ 4�x5, C6 ¼
16�x2 � 32�x3 þ 16�x4, C7 ¼ �8�x2 þ 32�x3 � 40�x4 þ 16�x5, C8 ¼ 7�x2�
34�x3 þ 52�x4 � 24�x5, C9 ¼ ��x2 þ 5�x3 � 8�x4 þ 4�x5, �x ¼ x=Be.

The longitudinal series functions Ym
u , Y

m
v , Y

m
w are defined as:

Ym
u ¼ Ym

v ¼ Ym
w ¼ /mðgÞ ð3Þ

where g ¼ y=L, and the admissible series function is proposed by
Beslin and Nicolas [21] as:

/mðgÞ ¼ sinðamgþ bmÞ sinðcmgþ dmÞ ð4Þ
where the coefficients am, bm, cm and dm are listed in Table 1, and the
first eight series functions /mðgÞ defined by Eq. (4) are reported in
Table 2. Note that the series functions when m > 4 have zero dis-
placement and zero slope at the ends of the plate strip element;
the free deflection and rotation at the end of y ¼ 0 are controlled
by the first function /1ðgÞ and the second function /2ðgÞ; and the
non-zero displacement and slope at the end of y ¼ L are dominated
by the third function /3ðgÞ and the fourth function /4ðgÞ.

The plate stiffness equations are expressed as:

fNg
fMg

� �
¼ ½A� ½B�T

½B� ½D�

" #
feg
fjg

� �
ð5Þ

with

fNg ¼ fNx Ny NxygT; fe0g ¼ fe0x e0y c0xyg
T

fMg ¼ fMx My MxygT; fjg ¼ fjx jy jxygT

½A� ¼
A11 A12 A16

A12 A22 A26

A16 A26 A66

2
64

3
75; ½B� ¼

B11 B12 B16

B12 B22 B26

B16 B26 B66

2
64

3
75;

½D� ¼
D11 D12 D16

D12 D22 D26

D16 D26 D66

2
64

3
75

ð6Þ

where Nx, Ny and Nxy are, respectively, the membrane transverse,
longitudinal and in-plane shear forces per unit length, and e0x , e0y
and c0xy are the membrane strains; Mx, My and Mxy are, respectively,
the transverse and longitudinal bending and twisting moments per
unit length, and jx, jy and jxy are the flexural strains, known as the
curvatures. Aij, Bij and Dij are, respectively, the extensional, bending-
extension, and bending stiffness coefficients.

The strain energy of the plate finite strip element can be
expressed as

Ue ¼ 1
2

ZZ
fegT fjgT
� � ½A� ½B�

½B� ½D�

� � feg
fjg

� �
dxdy

¼
ZZ

1
2
fegT½A�feg þ jT ½B�feg þ 1

2
fjgT ½D�fjg

� 	
dxdy ð7Þ

Substituting the related variables in Eqs. (1)–(6) into Eq. (7), the
strain energy equation is written as

Fig. 1. LO3 plate finite strip element.

Table 1
Coefficients of the series function.

m am bm cm dm

1 p/2 3p/2 p/2 3p/2
2 p/2 p/2 �p �p
3 p/2 0 p/2 0
4 p/2 0 p 0
>4 (m�4) p (m�4) p p p
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