Accepted Manuscript

Numerical simulation on elastic properties of short-fiber-reinforced metal matrix composites: Effect of fiber orientation

Wenlong Tian, Lehua Qi, Changqing Su, Jiming Zhou, Zhao Jing

PII: DOI: Reference:	S0263-8223(16)30602-X http://dx.doi.org/10.1016/j.compstruct.2016.05.046 COST 7459
To appear in:	Composite Structures
Received Date:	27 December 2015
Revised Date:	20 April 2016
Accepted Date:	14 May 2016

Please cite this article as: Tian, W., Qi, L., Su, C., Zhou, J., Jing, Z., Numerical simulation on elastic properties of short-fiber-reinforced metal matrix composites: Effect of fiber orientation, *Composite Structures* (2016), doi: http://dx.doi.org/10.1016/j.compstruct.2016.05.046

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Numerical simulation on elastic properties of

short-fiber-reinforced metal matrix composites: Effect of fiber

orientation

Wenlong Tian^{a, b}, Lehua Qi^{a, *}, Changqing Su^a, Jiming Zhou^a, Zhao Jing^c

^aSchool of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R.China

^bDepartment of Civil and Environmental Engineering, Northwestern University, Evanston 60208, Illinois, USA ^cSchool of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, P.R.China

*Corresponding author. Tel.: +86-29-88460447, Fax: +86-29-88491982, E-mail address: qilehua@nwpu.edu.cn (Lehua Qi)

Abstract

To investigate the effect of fiber orientation on the effective elastic properties of short-fiber-reinforced metal matrix composites, the two-step mean-field homogenization procedures including the D-I/Reuss, M-T/Reuss, D-I/Reuss, M-T/Voigt and D-M/V-R models are introduced and the corresponding numerical implementations are detailed. Compared with the RVE based FE homogenization method, the two-step mean-field homogenization procedures: D-I/Reuss, M-T/Reuss, D-I/Reuss, M-T/Reuss, D-I/Reuss, M-T/Reuss, D-I/Reuss, M-T/Reuss, M-T/Voigt and D-M/V-R models to predict the effective elastic properties of short-fiber-reinforced metal matrix composites are validated. The simulation results show that the axial effective elastic moduli E_{22} and E_{33} of short-fiber-reinforced metal matrix composites with the aligned fibers reach

Download English Version:

https://daneshyari.com/en/article/6705315

Download Persian Version:

https://daneshyari.com/article/6705315

Daneshyari.com