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a b s t r a c t

We study polymer migration in a periodic pressure-driven sudden contraction-expansion flow with con-
traction dimension comparable to the polymer radius of gyration, for which several polymer migration
mechanisms can be important: (1) sieving by the thin channel of polymers too large to easily enter them;
(2) deformation-hydrodynamic coupling, including wall-hydrodynamic interaction, which causes poly-
mers to drift away from the walls towards the center of the channel; (3) streamline-curvature-induced
migration, in which polymers traveling along curved streamlines migrate towards the center of curva-
ture; and (4) depletion-convection coupling, in which depletion layers in thin channels are convected
across wide side chambers, creating a one-sided diffusion barrier that leads to depletion from the side
chamber. We use both Stochastic Rotation Dynamics (SRD), which includes hydrodynamic interaction
(HI), and simple Brownian dynamics (BD), with HI omitted and flow field given by finite element analysis.
The similarity in results from SRD and BD at Weissenberg number Wi less than 10 (where Wi is based on
the shear rate in the narrow region of the contraction channel) shows that HI (Mechanism 2) has only a
weak effect on polymer migration in our tight geometry. At Wi > 1, the polymer migrates towards the
centerline in the wide region, due mainly to streamline-curvature-induced (SCI) migration (Mechanism
3), but also to depletion-convection-induced migration (Mechanism 4). And we demonstrate these two
mechanisms more explicitly in a pressure-driven flow in a grooved channel that is significantly wider
than the polymer. SCI migration dominates in the contraction geometry, and produces a migration veloc-
ity proportional to Wi2. Using the central limit theorem, we accurately predict the position and width of a
band of polymer passing through N periodic contractions, thereby demonstrating the potential for SCI
migration as a mechanism of size separation in a multi-step planar contraction channel. We find that
the best separation is achieved at Wi around 2, where SCI migration has the greatest resolving power
between polymers of different size. We also find that sieving (Mechanism 1) is dominant at low Wi less
than unity, where the chains with large radius of gyration are delayed in their entry to the thin channel,
relative to shorter polymers. This sieving separation mechanism differs from that of size-exclusion chro-
matography which yields faster migration by the shorter chains. Our strategy of combining simulation
methods with the central limit theorem could also be used to predict separation efficiencies of a wide
variety of polymers and colloids in microfluidic geometries.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Owing to recent advances in micro-fabrication technology,
microfluidic devices can be fabricated inexpensively and reliably
with tailored complex geometries. These devices commonly rely
on pressure-driven or electrokinetically-driven flows to stretch
polymer chains far from equilibrium. Such geometries provide a
powerful platform to study non-equilibrium polymer dynamics,

polymer-solvent interactions, and macromolecular transport phe-
nomena. A comprehensive understanding of polymer dynamics
in micro-fluidic devices is important for many potential applica-
tions, including polymer separation.

The most conventional and widely used polymer separation
technique is size-exclusion chromatography (SEC), which was first
developed in 1955 by Lathe and Ruthven [1]. A typical SEC method
is gel permeation chromatography (GPC), which can be traced back
to Moore [2]. GPC techniques separate based on polymer size or
radius of gyration. The flow rates in GPC columns are typically
too small to deform the polymer molecules; that is the

http://dx.doi.org/10.1016/j.jnnfm.2014.07.002
0377-0257/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +1 734 936 0772; fax: +1 734 763 0459.
E-mail address: rlarson@umich.edu (R.G. Larson).

Journal of Non-Newtonian Fluid Mechanics 211 (2014) 84–98

Contents lists available at ScienceDirect

Journal of Non-Newtonian Fluid Mechanics

journal homepage: ht tp : / /www.elsevier .com/locate / jnnfm

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2014.07.002&domain=pdf
http://dx.doi.org/10.1016/j.jnnfm.2014.07.002
mailto:rlarson@umich.edu
http://dx.doi.org/10.1016/j.jnnfm.2014.07.002
http://www.sciencedirect.com/science/journal/03770257
http://http://www.elsevier.com/locate/jnnfm


Weissenberg number Wi, which is the characteristic shear rate
multiplied by the polymer relaxation time, is usually very small,
much less than unity (<10�2) [2].

Meanwhile, techniques for separating biological molecules of
different sizes have been developed in parallel with the evolution
of molecular biology. Decades ago, Dill and Zimm [3,4] proposed
a rheological separation method for DNA molecules based on the
radial migration of the DNA that occurs when DNA solutions are
subjected to flow between rotating concentric cylinders or cones.
This radial migration results from a coupling between the polymer
deformation and the streamline-curvature of the flow field.

Very recently, Faivre et al. [5] reported that size exclusion of
cells from the wall can be enhanced in a contraction/expansion
geometry, and proposed an application of this for separation of
red blood cells from the suspending plasma. This effect actually
results from the convection of a wall depletion zone across the
wide channel of the contraction geometry, as discussed in more
detail later.

In this paper, we study polymer migration and separation in a
periodic planar contraction channel, using two mesoscopic simula-
tion methods. The first method is Stochastic Rotation Dynamics
(SRD), which is a particle-based method of solving for polymer
and fluid dynamics simultaneously, including the effects of hydro-
dynamic interaction (HI) within individual chains, between differ-
ent chains, and between chains and the walls of the geometry. The
SRD method is briefly described below in Section 2. The second
method is Brownian dynamics (BD), in which we use the flow field
in the absence of polymer, drawn either from a finite element solu-
tion or from SRD simulations, as the convection term in a Langevin
differential equation that, as used here, neglects all hydrodynamic
interactions and also neglects the modification in the flow field
produced indirectly by the polymer molecules through the
momentum balance equation. In Section 3, by comparing results
from SRD with those from Brownian dynamics (BD) for a single
polymer chain without HI, we show that HI has only a weak effect
on the polymer dynamics in our geometry for the flow rates con-
sidered, and that BD simulations without HI predict the polymer
migration accurately. We investigate in Section 4 the migration
mechanisms, which determine the spatial distribution and resi-
dence time distribution of the polymer, and show that the polymer
migration toward the center of the channel observed in both SRD
and BD simulations is due to the large curvature of the contraction
flow streamlines on the scale of the polymer size, and to a lesser
extent by the convection of a wall depletion zone, as alluded to
above. To demonstrate these phenomena more clearly, we exam-
ine polymer migration in a second flow, that of a pressure-driven
flow in a grooved channel that is significantly wider than the poly-
mer. Finally, in Section 5, we first show that the standard deviation
of the residence time distribution in the contraction geometry can
be used to determine the polymer dispersivity using the theory of
Taylor, and, by using the central limit theorem, we compute the
accumulated polymer separation that can be achieved in a periodic
contraction geometry. We summarize our results in Section 6.

2. Migration of a single polymer chain with HI, simulated using
SRD

In this section, we investigate migration of single polymer
chains with HI using Stochastic Rotation Dynamics (SRD). SRD is
an especially promising method for situations in which fluctuating
or time-dependent HI is potentially important, but the geometry is
so complex that Brownian dynamics with full HI is difficult to
implement. Earlier studies [6,7] have shown that SRD can accu-
rately capture HI in the relaxation dynamics of an isolated chain
in the absence of flow. Studies [8,9] have also shown that SRD

captures the HI between the solid boundaries and the polymer in
shearing flows. In principle it should also capture the influence of
polymeric stresses on the flow field.

2.1. Algorithm

In SRD simulations, the fluid is modeled by N solvent beads. The
polymer is, as usual, modeled as a chain of Nb polymer beads con-
nected by Ns = Nb – 1 springs. The algorithm consists of two steps: a
streaming step followed by a collision step after a discrete time step
Dt, which is referred as the collision time. In the streaming step, the
solvent/polymer beads simply follow Newton’s law, with the posi-
tions ri and velocities vi determined by integration using the veloc-
ity Verlet algorithm:

riðt þ DtÞ ¼ riðtÞDt þ 1
2

f iðtÞ
m

Dt2 ð2:1Þ

viðt þ DtÞ ¼ viðtÞ þ
1
2

f iðtÞ þ f iðt þ DtÞ
m

Dt ð2:2Þ

where fi is the force exerted on the i-th bead and m is the bead
mass. The masses of the solvent and polymer beads are not the
same, and the mass ratio is chosen to optimize transport of momen-
tum from the polymer to the solvent so that hydrodynamic interac-
tions are most accurately captured [7]. Usually the polymer beads
are more massive than the solvent beads, so that the integration
time step for the polymer beads can be the same as Dt without los-
ing accuracy at the relatively low shear rate applied in SRD simula-
tions in this paper. In the collision step, the solvent/polymer beads
are sorted into the cells of a d-dimensional cubic lattice (where typ-
ically d = 3) with lattice spacing a. The beads exchange momentum
following a ‘‘collision’’ rule in which their velocities are updated
after the collision as follows:

viðtþÞ ¼ vCoM;iðt�Þ þRðaÞ � viðt�Þ � vCoM;iðt�Þ
� �

ð2:3Þ

where RðaÞ is a stochastic rotation matrix which rotates the veloc-
ity vector in a random direction through an angle a, t+/� refers to the
time after/before the collision and vCoM, i is the center of mass veloc-
ity of all beads in the collision cell where the i-th bead is located.
This collision rule ensures that the kinetic energy and linear
momentum in the cell are conserved during the collision. Therefore
in SRD, the flow field is discretized with a resolution determined by
the cell size a. After each collision step, a thermostat is applied to
adjust the local temperature of each collision cell to the imposed
temperature [8,10]. To guarantee Galilean invariance over long
runs, a random shift of particles before executing the collision step
has to be performed, and after the collision step, the particles are
shifted back to their original positions [11].

2.2. Geometry and boundary condition

The geometry of a planar contraction channel in our simulation
is shown in Fig. 1. The simulation box has dimensions L1 � L2 � L3

where L3 is the out-of-plane dimension, not shown in Fig. 1. The
lower and upper wide chambers are connected by a narrow chan-
nel with width w and length h. A constant acceleration g is applied
along the y direction on each solvent bead to drive the flow.

Along the y and z directions, we apply periodic boundary condi-
tions; thus the geometry between the dashed lines shown in Fig. 1
is extended infinitely along those directions. Therefore we are
actually simulating a periodic contraction channel. The flow field
is invariant along the z-direction and thus two-dimensional,
although in SRD we solve the problem in three dimensions to allow
isotropic random velocity fluctuations from Brownian motion.
Along the walls, we apply a no-slip boundary condition. To realize
the no-slip boundary condition, in the streaming step the bounce-
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