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a b s t r a c t

A novel integrated scheme for modeling incompressible polymer viscoelastic fluid flows is proposed. Lat-
tice Boltzmann method (LBM) is incorporated into finite volume method (FVM) to solve the incompress-
ible Navier–Stokes equations and the constitutive equation respectively, and is implemented using open
source CFD toolkits to predict nonlinear dynamics of polymer viscoelastic fluid flows. The hybrid numer-
ical scheme inherits the efficiency and scalability of LBM and maintains the accuracy and generality of
FVM. It has been critically validated using the Oldroyd-B model and linear PTT model under Poiseuille
flow, Taylor-Green vortex flow and 4 : 1 abrupt planar contraction flow, respectively. The results from
the integrated scheme have good agreement with the analytical solutions and the numerical results of
other FVM schemes in previous publications.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of polymer solution depends not only on instant
flow conditions at present, but also on the entire deformation history
experienced by the fluid, hence exhibits complex non-Newtonian
dynamics and viscoelastic effects. Mathematically, polymer visco-
elastic fluid flows are usually studied by solving the Navier–Stokes
equations and the constitutive equation, which preserve the mass
and momentum conservation laws in the macroscopic flow, and
account for the microstructure evolution of polymers, respectively.
Given the diversity of viscoelastic liquids, various constitutive mod-
els have been developed to capture nonlinear behavior of viscoelas-
tic fluid flows. Constitutive models are commonly classified into two
categories, namely continuum models such as Oldroyd-B model [1]
and PTT model [2], and microscopic models, e.g., dumbbell type
models [3,4].

In order to carry out numerical simulations of viscoelastic fluid
flows, the Navier–Stokes equations and the constitutive equation
are usually discretized by one of the numerical schemes such as
finite difference method (FDM, e.g. [5]), finite element method
(FEM, e.g. [6]), finite volume method (FVM, e.g. [7,8]), spectral
method (SM, e.g. [9]), smoothed particle hydrodynamics (SPH,

e.g. [10]), etc., and solved numerically. Finite volume method is a
well-established numerical technique in CFD research, and avail-
able in many commercial software such as CFX/ANSYS, FLUENT,
PHOENICS and STAR-CD due to its advantages in preserving the
conservation laws and in handling the non-regular geometric
boundary. Simulation of viscoelastic fluid flows (e.g. [11]) is usu-
ally implemented by the so-called discrete elastic-viscous split
stress (DVESS) numerical strategy with one of the commonly used
pressure correction algorithms such as SIMPLE and PISO. Given
certain initial and boundary conditions, the complex coupled par-
tial differential equation system could be discretized into simple
linear systems and solved by an iterative procedure as shown in
details e.g. [11]. Although the iterative process for solving the lin-
ear systems could guarantee the accuracy of numerical solution, it
will reduce computational efficiency and scalability.

With a reputation of mesoscopic scheme, Lattice Boltzmann
method (LBM) is still mainly used for solving the incompressible
or weakly compressible continuum Navier–Stokes equations
[12,13]. Further modified LBM models can be utilized for simula-
tion of multicomponent [14] and multiphase complex fluids. Com-
pared to the continuum approach, LBM is constructed upon
molecular statistical mechanics. Distinguished from FDM, FEM,
FVM, and SM, LBM consists of only integration of the ordinary dif-
ferential equation coupled with simple collision rules. Due to its
good locality and simplicity, LBM scheme is suitable for parallel
computing, therefore it has attracted increasing attention in CFD
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simulations. Some attempts have already been made to apply LBM
scheme in simulation of viscoelastic fluid flows. But there are only
limited successes because of the improper incorporation of the vis-
coelastic stress. In works by Onishi et al. [15,16], the evolution of
polymer configuration is simulated by LBM scheme, and the Old-
royd-B and FENE-P model can be reconstructed from the polymer
configuration. However, only numerical results in simple shear
flows and under relatively weak viscoelastic effects are obtained.
Malaspinas [17,18] proposed a LBM scheme for the simulation of
viscoelastic fluid flows, by incorporating the classic LBM scheme
to simulate incompressible Navier–Stokes equations with a con-
vection-diffusion LBM mechanism for mimicking the viscoelastic
stress. Unfortunately it also produce unphysical error. Su et al.
[19] eliminated a part of this unphysical error in Malaspinas’s
works. However, both of them fail to reasonably explain the
unphysical diffusive term of viscoelastic stress. Their discretization
scheme for incorporating viscoelastic stress into LBM is dependent
on constitutive models, and are not general either.

By taking the advantages of LBM and FVM, an Integrated Lattice
Boltzmann and Finite volume technique for simulation of isother-
mal and incompressible ViscoElastic fluid flows (ILFVE) is pro-
posed here. The lattice Boltzmann-BGK scheme is used for
solving the incompressible Navier–Stokes equations, in which the
external force term is computed by viscoelastic stress tensor from
any arbitrarily specified constitutive equation; and the constitutive
equation is integrated in the framework of FVM with implicit or
explicit time schemes, using the solution of the velocity field at
any instant obtained from the lattice Boltzmann-BGK scheme. In
order to integrate these two numerical schemes, a specific coupling
scheme is constructed to ensure a seamless data transformation
between the two schemes. By incorporating LBM, the iterative pro-
cedures for solving the Navier–Stokes equations with FVM scheme
are eliminated, and the efficiency and scalability are considerably
improved, moreover, explicit time integration schemes could also
be introduced into FVM to obtain good locality when solving the
constitutive equation, and therefore the hybrid numerical scheme
could inherit the efficiency and scalability of LBM and maintain the
accuracy and generality of FVM. ILFVE scheme is implemented
using two open source CFD toolkits, namely OpenFOAM� and
OpenLB. Additional coupling modules are constructed to ensure a
full integration of OpenFOAM� and OpenLB libraries. The new sim-
ulation platform for modeling viscoelastic fluid flow is validated
under benchmark flow problems. Although as an illustration only
the Oldroyd-B model and the linear PTT model are presented here,
the proposed scheme is completely general and suitable for using
other constitutive models. To the best of our knowledge, it is the
first attempt to construct a numerical scheme to integrate LBM
and FVM in the simulation of viscoelastic fluid flows.

The rest part of the paper is organized as follows: In Section 2,
general mathematical models for viscoelastic fluid flows are
described. In Section 3 the main idea of ILFVE scheme is explained
in detail. In Section 4, comprehensive validations are carried out by
comparing the numerical solutions with ILFVE scheme with the
analytical solution of Oldroyd-B model in Poiseuille flow, the
numerical results of Taylor-Green vortex with FVM PISO scheme
[11], and the qualitative and quantitative results of 4 : 1 contrac-
tion flow from literature [20]. Finally, a conclusion is presented
in Section 5.

2. Viscoelastic constitutive models

In this work, we focus on the simulation of isothermal and
incompressible viscoelastic fluid flows. The typical composition
of the homogeneous polymer solution can be described as poly-
mers uniformly dissolved in incompressible Newtonian solvent.

The solvent dynamics is modeled by the Navier–Stokes equations
derived from the mass and momentum conservation laws:

r � u ¼ 0 ð1Þ

q
Du
Dt
¼ r � ð2gsSþ s� pIÞ ð2Þ

where u;q;gs;p represent the velocity, the density, the dynamic vis-
cosity, and the pressure of the viscoelastic fluid respectively.
S ¼ 1=2ðruþ ðruÞTÞ is the strain rate tensor. s is the contribution
of polymer solute to the total stress, which is defined by different
constitutive models.

Oldroyd-B model [1] is a relatively simple but widely used vis-
coelastic constitutive model, which is a tensorial extension of Max-
well model. The relationship between the viscoelastic stress tensor
s, the time and the strain rate is given by:

sþ k s
r
¼ 2gpS ð3Þ

where gp is the polymer contribution to the total viscosity of the
solution. s

r
is the upper convected derivative of viscoelastic stress

tensor, mathematically defined as:

s
r
¼ @s
@t
þ u � rs� s � ru� ðruÞT � s ð4Þ

PTT model [2,21] is more realistic than Oldroyd-B model, which
could explain the effects of elongational viscosity, especially some
transient effects. PTT model with single relaxation time could be
written as:

k s
r
þf ðtrðsÞÞsþ nkðS � sþ s � SÞ ¼ 2gpS ð5Þ

in which n is the slip parameter, which introduces a non-affine
response of polymer chains to an imposed deformation. k is the
characteristic relaxation time of the fluid. Two different PTT models,
namely the linear PTT model and exponential PTT model, could be
defined with a scalar function of the trace of viscoelastic stress ten-
sor f ðtrðsÞÞ. The function of f for linear PTT model [2] is given by:

f ðtrðsÞÞ ¼ ek
gp

trðsÞ þ 1 ð6Þ

The function of f for exponential PTT model [21] is given by:

f ðtrðsÞÞ ¼ exp
ek
gp

trðsÞ
" #

ð7Þ

where � is a parameter controlling elongational viscosity. If defining
� and n as 0, Eq. (5) would reduce to Oldroyd-B model.

FENE model [4] is built upon molecular dynamics mechanics,
which directly relates the macroscopic viscoelastic response of fluid
to the microscopic dynamics of polymer. In the microscopic view-
point, polymer dynamics could be characterized by the conforma-
tion tensor A ¼ hrri statistically, where r is the end-to-end vector
of a polymer molecule and h�i is an ensemble average. Among diver-
sified FENE models, the FENE-P model [22] proposed by Peterlin is
most popular, the conformation tensor of which is given by:

A
r
¼ �1

k
ðaA� bIÞ ð8Þ

where Perterlin function a and parameter b are defined as:

a ¼ 1
1� trðAÞ=L2 ; b ¼ 1

1� 3=L2 ð9Þ

L is the dumbbell extensibility parameter. The viscoelastic
stress tensor can be obtained from the conformation tensor with
following equation:

s ¼
gp

k
ðaA� bIÞ ð10Þ
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