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a b s t r a c t

In this paper, a new analytical solution for viscoelastic flow in curved elliptical pipes is presented for the
first time. The perturbation method is used to derive the analytical solution, and the curvature ratio is
considered as the perturbation parameter. The Oldroyd-B model is used as the constitutive equation,
so the result of the present study could be useful for modeling the flow of dilute polymeric solutions
inside curved elliptical pipes. The analytical solution is derived using an appropriate transformation that
converts the elliptical shape of a cross section to the unit circle. The transformed governing equations are
solved to the second-order terms using the perturbation method and the velocity field is obtained by
implementing the inverse transformation on the results. Here, the effects of geometry, Weissenberg num-
ber and Reynolds number on the axial velocity, secondary flows and flow rate are studied in detail.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Fluid flow in curved pipes is one of the most important flows in
fluid mechanics, as it has practical applications in industry such as
(1) fluid flow in pipelines, (2) internal cooling of turbine blades, (3)
flow in biological systems and (4) ducting in internal combustion
engines and (5) heat exchangers. The first analytical solution of
Newtonian flow in a curved pipe with circular cross section was
performed by Dean [1,2], who used the perturbation method and
found the onset of a pair of counter-rotating vortexes due to the
centrifugal force. Dean introduced a dimensionless number which
specifies the behavior of flow within curved ducts. This dimension-
less group represents the square root of the ratio between the
product of the inertia and centrifugal forces to the viscous force,
and measures the intensity of the secondary flow. Topakoglu [3]
improved Dean’s work by calculating the higher order terms of
perturbation series for flow-field parameters and obtaining an ana-
lytical relationship for the flow rate of Newtonian fluid in a curved
pipe. Similar investigations of Newtonian flow in circular curved
pipes have been performed by other researches [4–12].

Most previous analytical research has focused on the flow in
curved circular and annular pipes. Only limited research is avail-
able regarding other cross-section shapes due to the mathematical
difficulties of these problems. Flows in curved noncircular ducts

are of increasing importance in microfluidics, where lithographic
methods typically produce channels with noncircular cross-section
shapes. These channels are widely used in biological kits (e.g. DNA
extraction, cancers cell and bacteria detection, blood sample prep-
aration, and glucose monitoring kits), fuel cells, and compact heat
exchangers for small scales. Limited research regarding Newtonian
flow in curved pipes with an elliptical cross section includes Cum-
ing [13] who found non-axisymmetric secondary flows using
Dean’s [1,2] approach. Topakoglu and Ebadian [14] also studied
flow in curved pipes of elliptical cross section for two geometries
in which major or minor axis of the ellipse is in the radius of cur-
vature. They introduced an expression for the first term of expan-
sion of the secondary flow as a function of the ellipticity ratio. In
another research [15], they extended their previous work and
introduced a rate-of-flow expression for any value of flatness ratio
of the elliptical cross section. Takami and Sudou [16] investigated
fluid flow in an elliptically curved pipe both analytically and exper-
imentally. They compared their experimental results to analytical
results on pressure drop. They also suggested a correlation for
the friction coefficient. Tuttle [17] found the secondary flow pat-
tern of a pipe with an elliptical cross section whose axis is straight
but which is twisted about its axis. He also revised the results of
previous studies regarding helical pipes. Other researchers have
studied this flow by focusing on the orientation of the cross section
and Dean’s number [18–23].

Previous theoretical and numerical works regarding non-
Newtonian Dean flow generally have been performed for
circular-shaped of cross sections. Zhang et al. [24] used Galerkin’s
method to study Oldroyd-B fluid flow in circular curved pipes.
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They obtained the analytical solution of flow field at large Dean
and Weissenberg numbers. Fan et al. [25] used finite volume meth-
od to find a solution for fully developed creeping and inertial flow
of Oldroyd-B and UCM fluids in a curved circular pipe. They
showed that the first normal stress difference amplifies the inten-
sity of secondary flows and decreases the pressure drop value.
Their results have good agreement with experimental results
[26–28]. Besides numerical investigations, analytical solutions
especially, via the perturbation method, are used to study the flow
of non-Newtonian fluids in circular curved pipes. The first research
regarding viscoelastic fluids was performed by Thomas and Walt-
ers [29]. They studied the fully developed flow of viscoelastic fluid
in a curved pipe by the perturbation technique and showed that
the intensity of secondary flows has a direct relationship with elas-
tic properties of Oldroyd-B fluid. Bowen et al. [30] used Upper Con-
vected Maxwell (UCM) and second-order models to obtain the flow
rate of creeping flow in curved circular pipes. Robertson and Muller
[31] used perturbation methods to study fully developed flow of
Oldroyd-B fluids through curved pipes with circular and annular
cross-sections. Their results showed that in pipes of circular
cross-section, the velocity field for creeping flows of Oldroyd-B flu-
ids is qualitatively similar to non-creeping flows of Newtonian flu-
ids and a pair of counter-rotating vortices is generated in the flow
field. They also showed that in curved annular pipes, because of
inertial or elastic effects, two pairs of counter-rotating vortices ex-
ist in the flow field. Additionally, they investigated the effects of
elasticity on the drag for non-zero Reynolds number. Similar stud-
ies have been devoted for Reiner–Rivlin fluid [32], Bingham fluid
[33,34], second-order fluid [35,36] and Oldroyd-B fluid in rotating
curved pipes [37] using Dean’s approach.

Limited research has been focused on the viscoelastic flow in
curved pipes with elliptical cross section. Thomas and Walters
[38] studied the flow of an elastico-viscous liquid in a curved pipe
under a pressure gradient with an elliptical cross section. They
showed that counter-rotating vortices are generated in this flow.
They also showed that the flux through the pipe is independent
of the curvature of the pipe. They did not use suitable function
for viscoelastic effects and could not see the effects of elasticity
in the fluid correctly [39].

Their solution only obtained functional form of main flow veloc-
ity with a complicated coefficient which they could not solve and
so they could not calculate flow rate. They could only calculate
the stream line with first order of perturbation solution. Sarin
[40], using the same perturbation-method studied the fully devel-
oped steady laminar flow of an idealized elstico-viscous liquid
through a curved tube with an elliptical cross section. He found
that and the cross-sectional area varies slowly with longitudinal
distance. He reported functional forms of velocity components in-
volve a large number of unknowns in terms of basic parameters in
which numerical calculations should be carried out for calculating
the values of parameters. This makes the general discussion of the
behavior of the velocity profiles quite complicated. He did not re-
port any graph regarding streamline and velocity profile and flow
rate values He concluded that in a tube of increasing curvature,
secondary flows generated with delay. He also showed that the
point of maximum shear stress varies with the cross section.

As mentioned before, the most studies have been focused on
Newtonian fluids and only a few works are available on the non-
Newtonian fluid flow in channels with elliptical cross section. Un-
like previous studies, a new analytical solution for fully developed
Oldroyd-B fluid flow in a curved pipe with elliptical cross section is
presented using perturbation method. Generally, the current study
is the generalization of the work of Robertson and Muller [31] for
viscoelastic flow in elliptical curved pipes. This method was not
used previously, and we found our solution by applying a suitable
mapping to change the domain of solution from elliptical form to

unit circle. The mapped governing equations are solved, and the
solution is obtained up to second order of perturbations series
for the first time. Besides mentioned applications, this solution
can be especially used for validation of CFD codes and sometimes
for calibration of experimental setups. Fig. 1 shows the geometry
of a curved pipe which is used in current research. Here, the toroi-
dal coordinate system is used for studying the flow. According to
the Figure, R is the pitch radius of curvature.

Due to the complicated solution, MAPLE software is used for
deriving the flow solution. It is important to emphasize that it is
not possible to find a relationship for flow rate based on the
first-order terms of perturbation series. By calculating second-or-
der terms, an analytical relation for the flow rate of the Oldroyd-
B fluid in a curved pipe is obtained. Also, in the presence of high-
er-order terms, the axial velocity and secondary flows are calcu-
lated more accurately.

2. Mathematical modeling

2.1. Non-dimensional parameter

The non-dimensional parameters of the current study are:
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where r and s are the components of polar-toroidal coordinate sys-
tem, Wref is the reference velocity, u is the velocity component in x
direction, v is the velocity in y direction, w is the axial velocity in u
direction, vr is the velocity component in r direction, vh is the veloc-
ity component in h direction, vs is the velocity component in s direc-
tion, ~r1 is the polymeric stress, ~r2 is the Newtonian solvent stress, k
is the relaxation time of fluid, g is the viscosity, D is rate of deforma-
tion tensor, Re is Reynolds number, j is the curvature ratio, R is the
curvature radius of the curved pipe, and We is Weissenberg num-
ber. Also dh is the hydraulic diameter of pipe defined as follows:

dh ¼
4eAeP ¼ 4ðp~a~bÞ

2p 1
2 ð~a2 þ ~b2Þ
� �1=2 ¼

2~a~b

1
2 ð~a2 þ ~b2Þ
� �1=2 ð2Þ

In Eq. (2), eA is the cross-sectional area and eP is the perimeter of the
cross section. Also ~a and ~b are the major and minor axis of the ellip-
tical cross section, respectively.

Fig. 1. Geometry of the problem.
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