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a b s t r a c t

In this paper a new method is presented in order to determine the pore size distribution in a porous
medium. This original technique uses the rheological properties of some non-Newtonian yield stress flu-
ids flowing through the porous sample. This technique is based on the capillary bundle model (like the
other classical methods) which, despite its apparent simplicity, is capable of properly characterizing
the percolating pore size distribution. Then this distribution can be simply obtained from the measure-
ment of the total flow rate as a function of the imposed pressure gradient. The present technique is suc-
cessfully tested analytically and numerically for usual pore size distributions such as the Gaussian mono
and multimodal distributions, using Bingham and Casson fluids. The technique can also be extended to
any yield stress fluid and any kind of distribution.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Porous media are found literally everywhere around us [1–4], in
living matter, in Nature and in various technological applications.
The need in porous media will keep on growing in the future be-
cause of the increase in the price of energy and because of environ-
mental challenges; let us cite for example the recent application of
heat storage in granular porous media for solar collectors [5]; an-
other instance concerns heat storage for human housing using por-
ous phase change materials [6]; the continuous decrease in
conventional oil and gas reserves implies a high level of invest-
ments for tertiary recovery techniques [7]; the storage and the
behavior of pollutants in porous matter (hazardous wastes, CO2

sequestration. . .) are today an important challenge; they are also
used in some biological processes (dialysis, membrane transport)
[8]. . . These numerous applications make them the object of abun-
dant studies and are topics for which it is essential to have an in-
depth knowledge and an accurate characterization.

Since the early work of Darcy [9], the transport phenomena in
general and particularly the flow through porous media generated
an important research activity which is today still relevant. In fact,
all the porous media are made of networks of pores delimited by a
solid. Among the pores constituting this network we are particu-
larly interested in the percolating conduits excluding the isolated
pores, the dead ends and the finite clusters which do not carry
any flow. In these conditions the characterization of the percolat-
ing pore size distribution (PSD) of these porous media is a crucial

goal [10]. In fact the strong dependence of the transport properties
in porous media with the size of their pores and their polydisper-
sity constitute a challenge in many scientific areas. Various tech-
niques have been developed to characterize the network of such
porous solids, and particularly their pore size distribution. Among
the most popular techniques, we can quote: the mercury intrusion
porosimetry (MIP) [1–3,11] consisting into the injection of mer-
cury in the porous medium. This technique is based on the exis-
tence of a threshold below which the pores cannot be invaded.
Indeed due to its large surface tension mercury does not wet most
of the materials. A pressure difference DPlg must be imposed so
that mercury penetrates the pores whose radii rp are greater than
r�p ¼ 2rlg cos h=DPlg where rlg is the liquid/gas interfacial tension
and h the contact angle. The pore size volume distribution is ob-
tained with the derivative of the curve representing the volume
of the invaded pores according to the radius of the pores. Because
of the toxicity of mercury, this technique is intended to be phased
out. Another method to measure the pore-size distributions is the
BJH. method [12]. This classical method uses two mechanisms: the
isothermal adsorption (of nitrogen at 77 K) on the pore walls and
the capillary condensation, due to the molecular Van der Waals
interactions between a condensing vapor and the internal surface
of the pores. This BJH technique is based on the relationship be-
tween the imposed pressure and the radius of a cylindrical pore
where the capillary condensation takes place. This is the Kelvin–
Laplace equation: lnðP=P0Þ ¼ �2rlgv l cos h=NkTrp, where P and P0

are respectively the partial vapor pressure, the saturation vapor
pressure at the temperature T; rp the pore radius, N the Avogadro’s
number, k the Boltzmann’s constant and v l the liquid phase molar
volume. This method consists in measuring the desorption volume
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vs. the relative pressure: P=P0. Then the pore size distribution is
obtained from the derivative of this curve.

An alternative technique rests on the liquid–solid phase transi-
tion of the fluid in a porous medium [13,14]. This approach for
determining the PSD in porous materials has been suggested by
Kuhn et al. [15] and derived later by Brun et al. [16]. The principle
of the method is based on the lowering of the triple point temper-
ature of a liquid filling a porous material. It uses a thermodynam-
ical relationship between the reduction of the triple point
temperature DT of the confined liquid in the pores of radius rp

where the phase transition occurs. It is expressed by the Gibbs–
Thomson equation: DT=T0 ¼ 2rlsv l=DH0rp, where rls is the liquid/
solid interfacial tension, v l the liquid phase molar volume, DH0

the molar heat of fusion, rp the pore radius, and T0 the triple point
temperature of the unconfined liquid. Then the phase transitions
(solidification or melting) for a liquid confined within a pore occur
at lower temperatures when the pore size decreases. This differ-
ence in transition temperature DT , between confined and bulk li-
quid can be measured calorimetrically by DSC thermoporometry
(differential scanning calorimetry) [17] or cryoporometry using
nuclear magnetic resonance (NMR) [18]. Notice that all the tech-
niques mentioned above and developed in order to measure the
pore size distribution are based on the existence of a threshold.
The first one is due to the capillary pressure; the two others are
due to the phase change phenomena. Finally let us quote destruc-
tive techniques such as stereology [19] or non-destructive methods
such as Small Angle Neutron (SANS) or X-Ray Scattering (SAXS)
[20,21]. Unfortunately all these techniques can give quite different
results; moreover they are very expensive and require complex
equipment. Therefore in this study we propose a new alternative,
simpler and cheaper technique, in order to characterize the PSD
of a porous medium.

2. Objective of the study

Starting from the same principle utilized in the first three ther-
modynamical methods described above, we develop an approach
based on the threshold introduced by a yield stress fluid (which be-
longs to the class of non-Newtonian viscoplastic fluids without
time dependence). These fluids do not flow, before being subject
to a minimum shear stress called the flow yield stress s0. Many
materials such as polymers (carbopol. . .), foodstuffs (mayon-
naise. . .), cosmetics (beauty cream, toothpaste. . .), concentrated
slurries, electro-rheological fluids (suspensions of very fine
conducting particles in an electrically insulating fluid) and mag-
neto-rheological fluids (suspensions of magnetically polarizable
micron-sized particles in oil) [22]. . . have a rheological behavior
which is situated between a purely viscous liquid and a plastic so-
lid. These fluids may have a more or less well defined yield stress.
This critical stress that accompanies the transition between the so-
lid and the viscous behaviors is related to the internal structure of
the network of the material. The magnitude of the yield stress may
depend on the concentration of the dissolved substances inducing
the threshold and it may also vary with the pH of the solution (like
bentonite [23]). A lot of behavior laws are available to describe
such complex fluids. In our study we focus only on the classical
Bingham fluids [24,25] (drilling muds, oil painting, Laponite
[26]. . .), and Casson fluids (printing ink [27], sludge suspensions
and dispersion paint, blood [28]. . .).

The basic idea is the following: in order to set such fluids into
motion, it is necessary to impose between both ends of a pore a
pressure gradient ðrPÞ greater than a critical value depending on
the fluid yield stress ðs0Þ and the pore radius ðrpÞ. In other words,
for the pressure gradient rP, only the pores whose radius is
greater than the critical radius r0 ¼ 2s0=rP are invaded. Then it

is possible to scan the PSD by increasing the pressure gradient step
by step and measuring the corresponding flow rate Q.

3. Models and procedure

3.1. Porous medium and yield stress fluid models

In order to determine the pore size distribution of the percolat-
ing pores, the most popular model in all the thermodynamical
techniques described above is the capillary bundle model [29,30].
Although it is quite simple, it can account for most of the geomet-
rical properties of the real porous media such as the tortuosity, the
permeability and the variation in the pore cross-section as we shall
see later. Nevertheless the interconnectivity cannot be modeled.
We will use this model to derive the inversion technique which al-
lows us to obtain the PSD from the characteristic curve Q ¼ f rPð Þ
for a given yield stress fluid in non-inertial regimes. The simplest
yield stress fluid is described by the Bingham model. Such a fluid
obeys the following rheological behavior law:
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with s the shear stress tensor, D the rate of deformation tensor and
g the plastic viscosity of the fluid. For the flow in a tube with circu-
lar cross-section, these equations take the simpler form:

sr0z ¼ s0 þ g @uz
@r0

�� �� for sr0z > s0

@uz
@r0 ¼ 0 for sr0z 6 s0

(
ð2Þ

where sr0z is the shear stress, ð@uz=@r0Þ the rate of deformation and r0

is the radial coordinate.

3.2. Procedure and inversion

Our model is composed of parallel capillaries (Fig. 1) whose ra-
dii are distributed according to the unknown probability density
function pðrÞ. When a pressure gradientrP is imposed on this sys-
tem, the total flux is calculated from the elementary flow rate
q rP; rð Þ in a single capillary of radius r and from pðrÞ by the
integral:

QðrPÞ ¼
Z 1

r0¼
2s0
rP

qðrP; rÞpðrÞdr ð3Þ

This integral constitutes a Volterra equation of the first kind. As long
as the regime is non-inertial, the kernel of Eq. (3) is given by [31]:
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Fig. 1. Capillary bundle model.
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