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a b s t r a c t

A novel nonlocal discrete model is proposed in this paper to study the deformation and failure behaviors
of cross-ply laminated composite plate under static or quasi-static mechanical loadings. Different from
existing numerical approaches, the proposed model accounts for the material anisotropy at both
constitutive and structural level. To achieve this purpose, the proposed model rotates the underlying
topological structure, rather than transforming the material’s tangent stiffness matrix as in the
continuum-based simulations. Thus, different failure behaviors can be modeled as the natural outcome
of the breakage of connecting springs. The proposed model is verified and validated by comparing the
simulation results with analytical solution and experimental observations from open literature.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Due to its high strength and stiffness to weight ratios, among
many other superior properties, laminated composite structure
has been extensively used in various engineering applications,
such as aerospace, automotive and shipbuilding industries. Exten-
sive research works have been done on understanding the various
mechanical behaviors of the structure both numerically and exper-
imentally. Detailed reviews on computational models for lami-
nated composite plates and shells can be found in [1–4].

Full 3D elasticity analyses [5–10] reveal that the inter-laminar
continuity of transverse normal and shear stresses as well as the
layer-wise continuous displacement field through the thickness
of the laminated structure are essential requirements for analyses
of this type of structure. The inherent anisotropy and mismatch of
material properties, e.g., modulus and Poisson’s ratios, between
plies result in high inter-laminar stresses [11–15], which is critical
to the delamination failure [16]. Most existing computational
approaches are continuum-based and are more suitable before
the discontinuities occur, such as cracking and delamination. For
failure problems involving moving discontinuities, Continuum
Mechanics-based approaches become very difficult to be applied
even though there are many numerical techniques available in

the literature to handle discontinuities, such as the cohesive
elements [17], and the eXtended Finite Element Method (XFEM)
[18].

Comparing to Continuum Mechanics-based computational
tools, the discrete formulation-based approaches have intrinsic
advantages in failure analyses of composite structures, such as Dis-
crete Element Method (DEM) [19–21] and Peridynamics [22–24].
These models do not require external criteria and rules to guide
any fracture behaviors, such as initiation, propagation, branching
and coalescence. Different fracture behaviors can be naturally cap-
tured via breakage of connecting bonds. Recently, Chen et al.
[25,26] has developed a nonlocal lattice particle model for studying
the deformation and fracture behaviors of 2D homogeneous isotro-
pic materials. Different from other discrete models, the developed
lattice particle model introduces a nonlocal interaction between
interacting discrete particles. With this nonlocal interaction, the
constraint on Poisson’s ratio which is fixed to 0.25 for classical lat-
tice models has been completely removed [25] and the issue of
pathological dependence for fracture simulation using regular lat-
tice structures has been solved [26]. This approach was extended
for 2D anisotropic materials [27], 2D polycrystalline materials
[28], and 3D homogeneous isotropic materials [29]. Unlike the
traditional way of representing the material orientation by trans-
formation of material tangent stiffness matrix, the lattice particle
model treats the material orientation by rotating the topological
lattice structure accordingly. By doing this, not only the material
orientation is accurately represented, but also eliminates the mesh
dependency in some other computational models [30].
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In this study, the lattice particle methodology is extended to
model the deformation and especially failure behaviors of 3D
cross-ply laminated composite structures. The remainder of this
paper is organized as follows: in Section 2, the formulation and
derivation of the lattice particle model for orthotropic material is
discussed. The lattice rotation scheme for accurate material orien-
tation representation, the geometric modeling of laminated com-
posite structure and interface modeling are also discussed. A
spring based failure criterion is proposed for fracture modeling.
Section 3 presents numerical verification and validation study. Dis-
cussions and conclusions based on current study are drawn in
Section 4.

2. Proposed simulation methodology

2.1. Extension of nonlocal discrete model to orthotropic material

In the proposed lattice particle model, the domain of interest is
decomposed into regularly packed discrete units, or particles. Each
particle interacts with its neighbors via springs. In this study, the
simple cubic packing with both the first and the second nearest
neighboring particles as interacting neighbors is considered. A unit
cell is defined as the repeating non-overlapping unit identified
from the domain decomposition. A schematic for the simple cubic
packing and the two unit cells is shown in Fig. 1.

As can be seen in Fig. 1, there are six nearest neighbors
associated with unit cell 1 and twelve second nearest neighbors
with unit cell 2. The volumes of these two unit cells in terms of

the particle radius R can be calculated as V1 ¼ ð2RÞ3 ¼ 8R3 and
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The key component in the lattice particle formulation is the

potential energy for each particle. This potential energy eventually
determines the interactions between the particles, i.e., local or
non-local. Different from most other discrete models, the proposed
model introduces a nonlocal potential which has the following form
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where kIJ and TIJ are the local and nonlocal spring parameters, dlIJ is
the half elongation, I and J is the index of the particles, NI is the
number of neighbors for unit cell I.

Given the local and nonlocal energies, the potential energy for
each unit cell can be rewritten in terms of the components of the
strain tensor as
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with i; j; k; l ¼ 1; 2; 3, lI0 is half of the original length between the
reference particle and its Ith nearest neighbors. nb

i is the ith compo-
nent of the spring b given in Table 1.

Due to the conservative of the potential, the material tangent
stiffness matrix can be obtained by differentiating the total specific
energy with respect to the strain tensor twice as
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It should be noted that the Voigt notation for the material stiff-
ness matrix has been adopted in Eq. (5).

Using the unit normal vectors given in Table 1, the following
correspondence can be obtained by comparing the coefficients of
the material tangent stiffness matrices as
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Simple cubic packing
(green indicates the first neighbor and 

blue is the second neighbor)
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Cube

Unite cell 2: 
Rhombic dodecahedron

Fig. 1. The simple cubic lattice structure and the unit cells.
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The unit normal vectors for simple cubic structure.
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