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a b s t r a c t

We extend the Maffettone–Minale model by including non-elliptical shapes of dispersed particles, a new
family of internal forces controlling particle deformations, and particle–particle interactions. The last
extension is made by transposing the way the chain-chain interactions are mathematically expressed
in the reptation theory to suspensions. The particle–particle interactions are regarded as a confinement
to cages formed by surrounding particles and by introducing a new dissipative motion (an analog of the
reptation motion) inside the cages. Nonlinear responses to imposed shear and elongational flows are
found to be in qualitative agreement with available experimental data.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we are addressing rheology of colloidal dispersions
(see e.g. [1,2] for a recent review). Our objective is twofold. First,
we investigate relation between mesoscopic physics of dispersions
and their rheological behavior. Our second objective is to illustrate
the systematic formulation of governing equations of rheological
models that is based on the requirement of compatibility of their
solutions with mechanics (in the sense that the time reversible
part of the time evolution is Hamiltonian) and with thermodynam-
ics (in the sense that the entropy does not decrease during the time
evolution).

The level of description on which we formulate the mesoscopic
physics of dispersions in this paper is the level on which one sym-
metric three-by-three tensor (or possibly several of such tensors)
serves as a state variable describing the internal structure. We call
it Hand level of description since this type of the internal state var-
iable appeared first in [3]. We shall use the symbol c to denote the
tensor. After choosing c as the internal state variable, we have to
decide what is its physical interpretation. Among many possibili-
ties (see e.g. [4–9]), we choose in this paper to follow Maffettone
and Minale in [10], and regard it as a mathematical representation
of the ellipsoidal shape of the suspended particle. We call any rhe-
ological model on the Hand level of description with this physical
interpretation of c as the Maffettone–Minale model (or in an
abbreviated form MM-model).

What physics can we express in the MM-models? We begin
with the most important physical feature. If we restrict ourselves
to dispersed particles that are made of deformable but incompress-
ible materials then the volume of the particle characterized by c
has to remain constant during the time evolution. If we consider
det c as a measure of the volume of the ellipsoid associated with
c then the constraint det c ¼ const. is the first, most important,
physical feature of the MM-models. Next, we have to address the
question of what are the forces that control the particle deforma-
tions. In this paper we take them to be the forces generated by
the surface area of the particle. We show that this type of MM-
models predicts rheological behavior that is in a good qualitative
agreement with the experimental data reported in [11]. We then
continue and introduce more complex physics into dispersions.
In particular, we introduce: (i) more complex non-ellipsoidal
shapes of the particles, (ii) particle–particle interactions, and (iii)
new internal forces driving non-ellipsoidal deformations. The
MM-model with these new features is called an extended MM-
model or in an abbreviated form EMM-model.

Regarding the mathematical formulation of the model, particu-
larly new is the way in which we are expressing the particle–par-
ticle interactions. This type of interactions, that together with large
particle deformations may lead to a formation of an interconnected
network of particles [12], is expected to play an important role in
more dense dispersions. We are inspired by the reptation theory
developed by de Gennes and Edwards [13,14] in which chain-chain
interactions are seen as confinements to tubes (formed by sur-
rounding chains) inside which a new dissipative motion, called
reptation, takes place. In dispersions we replace tubes by cages
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(as it has been suggested on more microscopic levels of description
in [15,16]) inside which a new dissipative motion (analogical to
reptation) takes place.

We conclude the introduction by a comment about different
levels of description. The Hand level that we are choosing in this
paper is very much on the macroscopic end of the hierarchy of lev-
els. On the other hand, the level of description chosen for example
in [16]) in direct molecular simulations is on the opposite (micro-
scopic) end. The advantage of more macroscopic theories is a large
domain of applicability and a relative simplicity of the passage
from governing equations to predictions that can directly be com-
pared with experimental results. Their disadvantage is then an
inevitable presence of material parameters which, due to a large
‘‘distance’’ from microscopic physics, are not directly related to
microscopic characterizations of the particles. Given a specific col-
loid, their values representing it have to be found by considering
some of the macroscopic observations as their measurements.
The advantage of microscopic levels is the possibility to begin
the analysis with a very clear and specific microscopic physics.
The disadvantage is then small domain of validity (caused by the
specificity of the microscopic physics entering the modeling) and
the complexity of the passage to macroscopic levels on which
the experimental observations are made. Such passage is inevita-
bly involves largely ad hoc approximations needed for example
to express macroscopic forces (as e.g. temperature gradient) in
microscopic terms or to extract from the output of direct simula-
tions (particle trajectories) the macroscopic information of direct
interest. The modeling that has most advantages and the least dis-
advantages is a multilevel modeling pursued on several different
levels of description.

2. Maffettone–Minale model

In this section we present the MM-model as a particular realiza-
tion of GENERIC. The advantages of such presentation are the fol-
lowing: (i) the model, even before the modifications made in the
subsequent section, is more general and more complete than the
model introduced originally in [10], (ii) the intrinsic compatibility
of the morphology time evolution with the expression for the
stress tensor is guaranteed, and (iii) the extension of the
MM-model needed to express more complex physics becomes
straightforward (see Section 3).

First, we recall some basic elements of GENERIC. The objective
of GENERIC is to make the reduction process leading from a micro-
scopic insight to a mesoscopic model more systematic and trans-
parent. The main idea is that before starting the reduction we
make an assumption that the target mesoscopic equation pos-
sesses a certain structure. The requirement that the structure
emerges in the reduction makes the reduction well organized.
What is the structure of the mesoscopic time evolution equations
and why it is required? We require it because it guarantees that
solutions to equations possessing it agree with certain basic exper-
imental observations like for instance conservations of mass,
momentum and energy and observations constituting the experi-
mental basis of thermodynamics. The mathematical formulation
of the structure has emerged gradually. The mechanical content
has been formulated in the abstract Hamiltonian structure (first
for fluid mechanics equations [17] and for kinetic equations [18])
and the thermodynamic content in the structure of gradient
dynamics (in [19–21]). Both structures have been then combined
in [22–26]. A particular formulation of the combination (see (1)
below) has been called GENERIC (an acronym for General Equation
for Non-Equilibrium Reversible-Irreversible Coupling) in [27,28].
Geometrical and physical content of the structure has recently
been discussed in [29].

In this paper we limit ourselves to suspensions that are kept at
constant temperature. We recall therefore GENERIC only in this
particular case. Let x stand for the set of state variables. The equa-
tion governing its time evolution has the general form

@x
@t
¼ LðxÞUx �

@N
@x�

� �
x�¼Ux

ð1Þ

The symbol UðxÞ stands for the free energy. The first term on the
right hand side of (1) represents the Hamiltonian time evolution.
The operator LðxÞ, called a Poisson bivector, expresses mathemati-
cally the kinematics of x. The properties that L is required to satisfy
are best expressed by constructing with it a bracket
fA;Bg ¼ hAx; LðxÞBxi and requiring that it is a Poisson bracket (i.e.
fA;Bg ¼ �fB;Ag and the Jacobi identity holds). The notation that
we use in (1) and throughout the paper is the following: A and B
are real valued sufficiently general functions of x, Ax denotes a
derivative of A with respect to x, and h; i denotes scalar product.
The Hamiltonian time evolution is thus an evolution generated by
a potential (in the case of isothermal systems it is the free energy)
in which the gradient of the potential (a covector field) is trans-
formed into a vector field by the Poisson bivector L.

The second term on the right hand side represents the thermo-
dynamic part of the time evolution. This time evolution is also gen-
erated by the free energy but the geometrical structure
transforming its gradient into the vector field is different from
the one playing this role in the Hamiltonian dynamics. We refer
the reader who is interested in a more detailed physical and
geometrical discussion of (1) to [29]. Here we only explain the
notation: Nðx; x�Þ is the dissipation potential (see [21]), i.e. a poten-
tial satisfying: (i) Nðx;0Þ ¼ 0 for all x; (ii) Nðx; x�Þ reaches its mini-
mum as a function of x� for all x; and (iii) Nðx; x�Þ is a convex
function of x� in a neighborhood of x� ¼ 0 for all x. We note that
these properties guarantee that hx�;Nx� i > 0 which, together with
the property hUx; LðxÞUxi ¼ 0, implies that dU

dt > 0 during the time
evolution governed by (1).

We recognize in (1) four modules: Module 1 state variables x,
Module 2 their kinematics L, Module 3 dissipation potential N, and
Module 4 free energy U.

In the rest of this paper we formulate a mesoscopic rheological
model of soft colloids. We shall do it by expressing our physical
insight into this type of fluids in the four modules listed above.
The essential difference between this and the more usual deriva-
tion is that in the latter the physical insight is expressed directly
in one step in the governing equation while in our derivation the
process is gradual, module by module. The way the modules are
then combined, according to (1), guarantees agreement of
solutions of the governing equations with certain results of
experimental observations.

2.1. Module 1: State variables x

The point of departure of any type of rheological modeling is
always the choice of the level of description, or in other words,
the choice of state variables. We have to decide how shall we
express our physical insight mathematically. We can choose
between microscopic levels on which we can directly follow details
and more macroscopic levels on which only some selected aspects
of the morphology are followed. Optimally, we want to follow only
those details that are essential for our interest determined by our
experimental observations and intended applications. Since we
cannot know in advance of what type of physics is important and
what can be ignored, the choice of state variables is always a
trial-and-error procedure.

In this paper we decide to remain on a rather macroscopic level
of description. The advantage of this choice is a wide range of
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