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a b s t r a c t

In this work we implement the log-conformation reformulation for viscoelastic constitutive equations as
proposed by Fattal and Kupferman (2004) in the open-source CFD-software OpenFOAM�, which is based
on the collocated finite-volume method (FVM). The implementation includes an efficient eigenvalue and
eigenvector routine and the algorithm finally is second-order accurate both in time and space, when
using it in conjunction with an adequate convection scheme such as the CUBISTA scheme (Alves et al.,
2003). The newly developed solver is first validated with the analytical solution for a startup Poiseuille
flow of a viscoelastic fluid and subsequently applied to the three-dimensional and transient simulation
of a lid-driven cavity flow, in which the viscoelastic fluid is modeled by the Oldroyd-B constitutive equa-
tion. The results are presented for both the first-order upwind scheme and the CUBISTA scheme on four
hexahedral meshes of different size in order to check for mesh convergence of the results and a tetrahe-
dral mesh to show the applicability to unstructured meshes. The results obtained for various values of the
Weissenberg number are presented and discussed with respect to the location of the primary vortex cen-
ter, streamline patterns and velocity and stress profiles besides others. We are able to obtain sufficiently
mesh converged results for Weissenberg numbers, which would have been impossible to obtain without
use of the log-conformation reformulation. An upper limit for the Weissenberg number in terms of sta-
bility could not be found.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Simulation of complex viscoelastic flows at high Weissenberg
numbers is an outstanding challenge. Fortunately, the last years
provided significant progress in developing stable and accurate
numerical algorithms [5,10,29]. Benchmark problems used in aca-
demia to test numerical algorithms include contraction flows
[28,29], flows around spheres [30,17] and cavity flows [10,11,16]
besides others.

Most of the work on cavity flows done so far was solely theoret-
ically motivated, which is mainly because remarkably complex
flow patterns develop in this very simple geometry [23]. Neverthe-
less, predicting and understanding the flow inside cavities is also of
particular industrial relevance for short-dwell and flexible blade
coaters [2]. Numerical simulation of the flow of a Newtonian fluid

inside a cavity is straightforward and literature on that is exhaust-
ing, e.g. Sheu and Tsai [26], who studied the steady flow topology
in a three-dimensional lid-driven cavity with a finite-element
method at a Reynolds number of Re ¼ 400. In contrast, predicting
the flow of a viscoelastic fluid in a cavity is demanding and litera-
ture about that is few so far. A reason for the little interest may
partly be due to the comparatively very low Weissenberg number
that can be achieved. For example, Demir [8] studied the transient
flow of a viscoelastic fluid governed by the upper convected Crim-
inale–Ericson–Filbey (CEF) equation and the maximum Weiss-
enberg number obtained was only Wemax ¼ 0:01 for all Reynolds
numbers considered. Similar to others, Demir [8] imposed a uni-
form velocity at the moving lid, which leads to discontinuities at
the two upper corners. This limits the maximum attainable Weiss-
enberg number typically to below 0.2 [13]. More recent works
impose regularized boundary conditions in order to have a vanish-
ing velocity and velocity gradient at the two upper corners, see for
example Fattal and Kupferman [11]. However, a thin boundary
layer close to the lid and a singular point for the conformation
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tensor at the downstream upper corner remain, which still leave
this problem to be difficult and pose an upper limit for the Weiss-
enberg number [16].

Fattal and Kupferman [10,11] proposed the so-called log-con-
formation reformulation (LCR), in which a logarithmized evolution
equation for the conformation tensor is solved instead of solving
the constitutive equation itself. This removes the exponential var-
iation of the stress (and also the conformation tensor) at stagnation
points. The new variable (the logarithm of the conformation ten-
sor) can better be approximated by polynomial-based interpola-
tion schemes than the exponentially behaving conformation
tensor (or stress) itself. A beneficial side-effect of this technique
is that the positive-definiteness of the conformation tensor is
always preserved. Fattal and Kupferman tested this technique for
a two-dimensional viscoelastic cavity flow of a FENE-CR [10] and
Oldroyd-B [11] fluid and they presented stable simulations up to
a Weissenberg number of 5. Oscillations in the kinetic energy show
the loss of convergence and the onset of a transient flow pattern for
Weissenberg numbers above 3. Pan and Hao [25] applied the log-
conformation technique in operator-splitting form to their finite-
element code and simulated the two-dimensional Stokes flow of
a viscoelastic fluid in a cavity up to a Weissenberg number of 3.
They solve the logarithmized evolution equation for the conforma-
tion tensor on a coarser grid than the velocity, similar as it was
done in the work of [10,11]. This reduces the number of high fre-
quency modes, which, in turn, further stabilizes the solution of
the logarithmized equation. A first-order upwind difference
scheme was used for discretizing the advection term of the consti-
tutive equation in that work. Upwind differencing, however, is
known to be least accurate as it introduces a large amount of
numerical diffusion, although this helps to stabilize the solution
and significantly increases the maximum achievable Weissenberg
number. Oliveira [23] used a finite-volume method to simulate
the steady flow and the transient recoil of a FENE-CR fluid with a
regularized boundary condition and a comparatively large retarda-
tion ratio of 0.79. The maximum Weissenberg number was 10 for
creeping flow conditions (Re ¼ 0). The advection term of the con-
stitutive equation was discretized with the convergent and highly
accurate CUBISTA scheme, which is formally of order three [3].
Yapici et al. [33] used a finite-volume method code, in which they
also use the upwind scheme for treating the convective term in the
constitutive equation. They performed simulations for the flow of
an Oldroyd-B fluid in a cavity at different Reynolds numbers and
presented results up to a Weissenberg number of 1 for creeping
flow conditions.

In this work, the log-conformation reformulation is imple-
mented in the collocated finite-volume based open-source soft-
ware OpenFOAM�. Results are presented for the flow of an
Oldroyd-B fluid in a startup Poiseuille flow and a three-dimen-
sional cavity at creeping flow conditions. The remaining of this
work is organized as follows: in Chapter 2 the governing equations
are presented and the theory of the log-conformation approach is
explained. In the following Chapter 3 the numerical implementa-
tion in OpenFOAM� is described. In Chapter 4 the results for the
startup of Poiseuille flow and the three-dimensional lid-driven
cavity are presented and discussed. Finally, in Chapter 5 this work
ends with a summary.

2. Mathematical background

2.1. Governing equations

We consider the flow of an incompressible and isothermal vis-
coelastic fluid, which is governed by the Oldroyd-B constitutive
equation [22]. The balance equations are the mass and momentum
balance

r � U ¼ 0 ð1Þ

q
@U
@t
þr � UUð Þ

� �
¼ �rpþr � s ð2Þ

where U is the velocity, q is the density, t is time, p is pressure and s
is the extra stress tensor, which can be written as the sum of a sol-
vent and polymer contribution

s ¼ sS þ sP ð3Þ

For the solvent contribution the Newtonian law holds

sS ¼ gS rUþ rUð ÞT
h i

ð4Þ

where gS is the solvent viscosity. For the polymeric contribution sP ,
the Olroyd-B equation may hold in this work, although it should be
noted here that numerous other constitutive equations, such as the
Giesekus, SPTT or FENE-type models as well as multi-mode models
are forthcoming within this framework. The Oldroyd-B equation is
defined as follows

sP þ ks
O

P ¼ gP rUþ rUð ÞT
h i

ð5Þ

where k is the relaxation time and gP is the polymer viscosity. s
O

P

denotes the upper-convected time derivative

sOP �
@sP

@t
þr � UsPð Þ � rUð ÞT � sP � sP � rU ð6Þ

The retardation ratio b is defined as the ratio between solvent
viscosity gS and total viscosity g0 ¼ gS þ gP

b ¼ gS

g0
¼ gS

gS þ gP
ð7Þ

The Oldroyd-B equation may be rewritten in terms of the con-
formation tensor c

sP ¼
gP

k
c� Ið Þ ð8Þ

where I is the identity matrix. Using Eq. (8) the constitutive equa-
tion Eq. (5) becomes
@c
@t
þr � Ucð Þ � rUð ÞT � c� c � rU ¼ 1

k
I� cð Þ ð9Þ

Instead of Eq. (9) can be solved and subsequently the polymeric
stress obtained with use of Eq. (8).

2.2. Log-conformation approach

The conformation tensor c is required to be strictly positive def-
inite for the evolution equation Eq. (9) to be well-posed. In flows of
high elasticity, this property may be violated, which often results
in the numerical computation to fail. The main issue was shown
for a 1-D problem [11]: in areas of high deformation rates the
stretching and relaxation terms exhibit exponential growth. The
only term to balance this growth is the convection term. However,
since the convection term is based on polynomial interpolations,
the convection term fails to balance the exponential amplification,
which then results in the numerical simulation to blow up. To cope
with this instability, Fattal and Kupferman [10] suggested a loga-
rithmic transformation of Eq. (9), which became known as the
’log-conformation approach’ and will shortly be outlined in the
following.

Since the conformation tensor c is a symmetric positive-definite
(SPD) matrix, it can be diagonalized according to

c ¼ R � K � RT ð10Þ

K is a diagonal matrix consisting of the three eigenvalues of c on
the diagonal and R is an orthogonal matrix, which is formed by the
three eigenvectors of c. Any diagonal matrix can be logarithmized
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