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a b s t r a c t

For the purpose of improving structural dynamic reliability, a topological optimization methodology for
maximizing the dynamic response reliability index is proposed based on the bi-directional evolutionary
structural optimization (BESO) method. The objective of the present study is to maximize the dynamic
response reliability index at specified points on the structure under random excitation, subject to volume
constraints on multi-phase materials over the admissible design domain. The sensitivity of the dynamic
response reliability index with respect to the design variables is derived. The optimization procedure of
the extended BESO method is presented. A series of numerical examples in both 2D and 3D are presented
to demonstrate the effectiveness and efficiency of the proposed approach.
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1. Introduction

Structural topology optimization has been an important design
tool in the conceptual design phase. In essence, topology optimiza-
tion is to find the optimal material distribution within a prescribed
design domain in order to obtain the best structural performance.
Since the original homogenization method was proposed, topology
optimization techniques have developed in a number of different
directions, including density method, level set method, topological
derivative, phase field, evolutionary approaches and several
others [1].

Previous research on topology optimization of continuum
vibrating structures focused primarily on structural dynamic char-
acteristics, including frequencies and frequency response. Xie and
Steven [2,3] proposed ESO (evolutionary structural optimization)
method to solve a wide range of frequency optimization problems,
which include maximizing or minimizing a chosen frequency of a
structure, keeping a chosen frequency constant, maximizing the
gap of arbitrarily given two frequencies, as well as considerations
of multiple frequency constraints. Zhao et al. [4,5] extended ESO
method and investigated the effect of the element contribution
factor to the natural frequency based on the energy conservation

principle, simultaneously optimizing several different natural
frequencies. Yang et al. [6] applied the bi-directional ESO (BESO)
method to structural topology optimization subject to frequency
constraints. Huang et al. [7] proposed a new BESO method based
on a modified solid isotropic material with penalization (SIMP)
model for the frequency optimization of continuum structures.
Zuo et al. [8] extended BESO method to structural topology opti-
mization with multiple displacement and frequency constraints.
The main advantage in using the ESO method or its improved
method-BESO method, lies in the fact that it is simple in concept
and easy to be implemented and linked to existing finite element
codes. Maeda et al. [9] designed the vibrating structures that tar-
gets desired eigenfrequencies and eigenmode shapes. Du et al.
[10] developed a method to handle topology optimization prob-
lems associated with multiple eigenfrequencies so as to maximize
specific eigenfrequencies and distance between two consecutive
eigenfrequencies of the continuum structures. Tsai et al. [11] pro-
posed a technique for determining the material distribution of a
structure based on SIMP to obtain desired eigenmode shapes for
problems of maximizing the fundamental eigenfrequency. Zhou
[12] put forward a method to maximize the natural frequencies
of vibration of truss-like continua with a constraint on the material
volume. Yoon [13] used the topology optimization based on the
internal element connectivity parameterization method for nonlin-
ear dynamic problems, where element instability is avoided and
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localized vibration modes is controlled. Xu et al. [14] presented a
bi-level optimization methodology for the non-probabilistic relia-
bility optimization on frequency of continuum structures with
uncertain-but-bounded parameters.

However, for the topology optimization of vibrating structures, it
is necessary to consider several different problems: frequency
response problem, transient response problem, and others besides
the eigenvalue problem. These different problems may require dif-
ferent solution techniques, and solutions may be of very different
natures. A modified optimality criteria method is developed for
structural frequency response based topology optimization [15].
Jog [16]minimized the vibrations of structures subjected to periodic
loading by topology optimization method. An efficient procedure
based on frequency responses represented by Pade approximants
for topology optimization of dynamics problems was proposed
[17]. Yoon [18] pointed out that the Ritz vector and quasi-static Ritz
vector methods can be used as two kinds of excellent model
reduction schemes for stable optimization. Shu et al. [19] proposed

level set based topology optimization method for minimizing fre-
quency response. Vicente et al. [20] extended BESOmethod to opti-
mize the frequency response of fluid–structure interaction systems
by topology optimization. Further, the transient response analysis of
engineering structures is related to both the external excitations and
the inherent dynamic characteristics of the structure. Therefore, the
dynamic response based topologyoptimizationhas been considered
[21]. Rong et al. [22,23] used the ESO method and SQP method to
obtain the optimal topology of the continuum structures under ran-
domexcitations. Zhang et al. [24] proposed an efficient optimization
procedure integrating pseudo excitationmethod andmode acceler-
ationmethod for the topology optimization of large-scale structures
subjected to stationary random excitation. In order to reduce the
computational cost, Jang et al. [25] presented an equivalent static
load method in time domain for dynamic response based topology
optimization problem. However, no attempts have been made on
the dynamic reliability based topology optimization. The optimum
design of structures considering dynamic response reliability is of
great importance, particularly in the aeronautical and automotive
industries.

This paper is composed as follows: In Section 2, the general
topology optimization problem on structural dynamic response
reliability is introduced. The sensitivity of dynamic response relia-
bility index with respect to the design variables is derived in Sec-
tion 3. In Section 4, the numerical techniques and the
optimization procedure based on the BESO method are presented.
In Section 5, a series of numerical examples in 2D and 3D are pre-
sented. Conclusions are drawn in Section 6.

2. Optimization problem statement

The dynamic response reliability based topology optimization
problem for continuum structures with multi-phase materials
can be formulated as follows
Maximize : PðaÞ

subject to
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where PðaÞ is the dynamic response reliability index corresponding
to the specified points or surfaces on the structure under random
excitation. Vi is the volume of element i, V�

q is the prescribed volume
for phase material q and n is the total number of material phases.
aij is the design variable as defined in [26]. X, _X and €X are the sys-
tem displacement, velocity and acceleration vectors. fðtÞ is the
external force vector. M, C and K are the system mass, damping
and stiffness matrices. The system stiffness and mass matrices can
be respectively expressed as
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Fig. 1. Flow chart of the proposed BESO procedure.
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