ELSEVIER

Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier.com/locate/compstruct

Partition of mixed-mode fractures in 2D elastic orthotropic laminated beams under general loading

J.D. Wood, C.M. Harvey *, S. Wang

Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom

ARTICLE INFO

Article history: Received 5 April 2016 Accepted 6 April 2016 Available online 8 April 2016

Keywords:
Energy release rate
Fracture mode partitioning
Orthotropic laminated composites
Mixed-mode fracture
Orthogonal pure modes
Shear forces

ABSTRACT

An analytical method for partitioning mixed-mode fractures on rigid interfaces in orthotropic laminated double cantilever beams (DCBs) under through-thickness shear forces, in addition to bending moments and axial forces, is developed by extending recent work by the authors (Harvey et al., 2014). First, two pure through-thickness-shear-force modes (one pure mode I and one pure mode II) are discovered by extending the authors' mixed-mode partition theory for Timoshenko beams. Partition of mixed-mode fractures under pure through-thickness shear forces is then achieved by using these two pure modes in conjunction with two thickness ratio-dependent correction factors: (1) a shear correction factor, and (2) a pure-mode-II energy release rate (ERR) correction factor. Both correction factors closely follow an elegant normal distribution around a symmetric DCB geometry. The principle of orthogonality between all pure mode I and all pure mode II fracture modes is then used to complete the mixed-mode fracture partition theory for a general loading condition, including bending moments, axial forces, and through-thickness shear forces. Excellent agreement is observed between the present analytical partition theory and numerical results from finite element method (FEM) simulations.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

An analytical method for partitioning mixed-mode fractures in orthotropic laminated double cantilever beams (DCBs) with rigid interfaces has been developed in the authors' recent work [1] by taking 2D elasticity into consideration in a novel way. In Ref. [1], the DCBs are under crack tip bending moments and axial forces. The present study extends Ref. [1] to include crack tip through-thickness shear forces which commonly occur in practice.

Some of the previous studies on the topic include Lu et al.'s work [2] where the finite element method (FEM) was used to investigate the effects of transverse shear on an orthotropic beam with a crack present. Orthotropic rescaling simplified the numerical analysis to three non-dimensional parameters. The total energy release rate (ERR) was obtained by using the J-integral and then the crack tip displacements allowed the total ERR to be partitioned into its individual mode I and II components. Wang and Qiao [3] extended the conventional 2D elasticity-based partition theory of Suo and Hutchinson [4] to take into account shear deformation by using first-order shear-deformable plate theory for a bimaterial

E-mail addresses: j.wood@lboro.ac.uk (J.D. Wood), c.m.harvey@lboro.ac.uk (C.M. Harvey), s.wang@lboro.ac.uk (S. Wang).

interfacial crack. The total ERR was determined using the J-integral and related to the individual stress intensity factors by introducing an unknown parameter which, as the solution to an integral equation, must be determined from tabulated numerical data from a limited range of geometries and material configurations. Li et al. [5], also using Suo and Hutchinson's work [4], considered the effects of transverse shear loading on a crack between a layered, isotropic, linear elastic material. They asserted that it is not possible to use beam theories (even higher-order ones) to determine the shear component of the ERR because such an approach neglects the contribution of the deformation local to the crack-tip, which plays a crucial role. They concluded that a full elastic solution is required and used the FEM. They combined their results with Suo and Hutchinson's theory [4] for bending moments and axial forces to provide the ERR and mode partition for layered materials under general loading conditions. A disadvantage of this method, again, is its reliance on tabulated data. The effect of through-thickness shear forces on the fracture-mode partition of a DCB therefore still remains a crucial area of research.

The authors' partition theory based on classical beam theory [6–10] has given excellent predictions of mixed-mode fracture toughness for delamination in generally laminated composite beams [8–10] when compared against the experimental test data from some independent comprehensive testing [11–20]. In comparison, mixed-mode partition theories based on 2D elasticity

^{*} Corresponding author.

Nomenclature

crack length in a DCB а

b width of a DCB

 γ -dependent correction factor for ERR due to β_{P-2D} $c(\gamma)$

mode II, $G_{\beta_{P-2D}}$ in-plane Young's moduli in the longitudinal and trans- E_L, E_T

verse directions

 G, G_I, G_{II} total, mode I and II ERRs in 2D elasticity theory

 G_T, G_{I-T}, G_{II-T} total, mode I and II ERRs in Timoshenko beam

 $G_{\theta_{P-T}},G_{\beta_{P-T}}$ ERRs due to θ_{P-T} mode I and β_{P-T} mode II in Timoshenko beam theory

 $G_{\theta_{P-2D}}, G_{\beta_{P-2D}}$ ERRs due to θ_{P-2D} mode I and β_{P-2D} mode II in 2D elasticity theory

 $G_{\theta_{1-2D}}, G_{\beta_{1-2D}}$ ERRs due to θ_{1-2D} mode I and β_{1-2D} mode II in 2D elasticity theory

 h_1, h_2, h thicknesses of upper, lower and intact beams

interface spring stiffness k_s

uncracked length of DCB

 M_1, M_2 DCB tip bending moments on upper and lower beams M_{1B} , M_{2B} crack tip bending moments on upper and lower beams

DCB tip axial forces on upper and lower beams N_1, N_2

 N_{1B} , N_{2B} crack tip axial forces on upper and lower beams

 N_{1Be} crack tip effective axial force on upper beam P_1, P_2 DCB tip shear forces on upper and lower beams

 P_{1B}, P_{2B} crack tip shear forces on upper and lower beams

thickness ratio, h_2/h_1

 $\theta_{i-2D}, \beta_{i-2D}$ pure mode I and II (with i = 1, 2, 3, 4) in 2D elasticity

 $\theta_{P-T}, \, \beta_{P-T}$ shear force only pure mode I and II in Timoshenko beam theory

 $\theta_{P-2D}, \beta_{P-2D}$ shear force only pure mode I and II in 2D elasticity

 $\kappa(\gamma)$ γ-dependent through-thickness shear correction factor

through-thickness shear modulus μ_{LZ}

in-plane Poisson's ratios v_{LT}, v_{TL}

interface normal and shear stresses σ_n, τ_s

Abbreviations

double cantilever beam DCB ERR energy release rate **FEM** finite element method

VCCT virtual crack closure technique

[1,4] have shown poor correlation with experimental results. It is, however, still an unanswered question as to which mixed-mode partition theory provides the most accurate results for brittle fracture subjected to other loading conditions such as fatigue or thermal loading. Therefore, it is still essential to develop mixedmode partition theories based on 2D elasticity in order to provide a comprehensive set of tools for the understanding of interfacial fractures. This is the motivation of present work.

The format of this paper is as follows: Initially, in Section 2.1, the ERR partition based on Timoshenko beam theory [6-10] is extended to consider a 2D elastic orthotropic DCB with throughthickness shear forces alone at the crack tip. Then, in Section 2.2. a mixed-mode partition theory is established for the DCB under general loading conditions which include crack tip bending moments, axial forces and shear forces. Comparisons for the mixed-fracture mode partition theory are made against results from 2D FEM simulations for a combination of loading conditions in Section 3. Conclusions are drawn in Section 4.

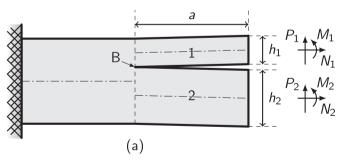
2. Analytical development

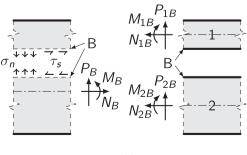
2.1. Mixed-mode partitions with through-thickness shear forces alone at the crack tip

Fig. 1a shows a laminated DCB with its geometry and tip bending moments M_1 and M_2 , axial forces N_1 and N_2 , and through thickness shear forces P_1 and P_2 . Fig. 1b shows the internal loads at the crack tip and the sign convention of the interface normal stress σ_n and shear stress τ_s . The total ERR and its partitions under crack tip through-thickness shear forces, P_{1B} and P_{2B} , are calculated from Timoshenko beam partition theory [6-10] as:

$$G_{T} = \frac{1}{2b^{2}h_{1}\kappa\mu_{LZ}} \left(P_{1B}^{2} + \frac{P_{2B}^{2}}{\gamma} - \frac{(P_{1B} + P_{2B})^{2}}{1 + \gamma} \right)$$

$$= \{ P_{1B} \quad P_{2B} \} [C_{T}] \{ P_{1B} \quad P_{2B} \}^{T}$$
(1)


$$G_{I-T} = c_{I-T} \left(P_{1B} - \frac{P_{2B}}{\beta_{P-T}} \right)^2 \tag{2}$$


$$G_{II-T} = c_{II-T} \left(P_{1B} - \frac{P_{2B}}{\theta_{P-T}} \right)^2 \tag{3}$$

$$c_{I-T} = G_{\theta_{P-T}} \left(1 - \frac{\theta_{P-T}}{\beta_{P-T}} \right)^{-2}, \quad c_{II-T} = G_{\beta_{P-T}} \left(1 - \frac{\beta_{P-T}}{\theta_{P-T}} \right)^{-2}$$
 (4)

$$G_{\theta_{P-T}} = \frac{1}{2b^2 h_1 \kappa \mu_{IZ}} \left(1 + \frac{\theta_{P-T}^2}{\gamma} - \frac{(1 + \theta_{P-T})^2}{1 + \gamma} \right)$$
 (5)

$$G_{\beta_{P-T}} = \frac{1}{2b^2 h_1 \kappa \mu_{IZ}} \left(1 + \frac{\beta_{P-T}^2}{\gamma} - \frac{(1 + \beta_{P-T})^2}{1 + \gamma} \right)$$
 (6)

(b)

Fig. 1. A laminated DCB. (a) General description. (b) Details local to the crack tip.

Download English Version:

https://daneshyari.com/en/article/6705614

Download Persian Version:

https://daneshyari.com/article/6705614

<u>Daneshyari.com</u>