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a b s t r a c t

The deformation and cross-streamline migration of an initially spherical neo-Hookean elastic particle
suspended in confined shear flow of Newtonian and Giesekus viscoelastic fluids is studied through 3D
arbitrary Lagrangian Eulerian finite element method numerical simulations. In both a Newtonian and a
Giesekus liquid, when suspended in a symmetric position with respect to the walls of the flow cell,
the particle deforms until reaching a steady ellipsoid-like shape, with a fixed orientation with respect
to the flow direction. The dependences of such deformation and orientation on the flow strength, the
geometric confinement, and the rheological properties of the suspending liquid are investigated. If the
particle is initially closer to a wall of the channel than to the other, it also migrates transversally to
the flow direction. In a Newtonian liquid, migration is always towards the center plane of the channel.
In a Giesekus viscoelastic liquid, the migration direction depends on the competition between the elastic
and the viscous forces arising in the suspending fluid; in a certain range of constitutive parameters, an
‘equilibrium vertical position’ in between the mid plane and the (upper/lower) wall of the channel is
found, which acts as an attractor for particle migration.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Elastic particles in a suspending liquid are systems of interest
from both a scientific and a technological point of view: indeed,
they can be regarded as models for more complicated systems,
e.g. cells in biological flows, and can also be found as such in pro-
cessing, e.g. filled polymers.

It is rather surprising that a somewhat limited attention has
been devoted to such systems in the research literature; for sure,
a wide comprehension of their mechanical behavior in flow is still
lacking. In 1946, Fröhlich and Sack [1] investigated a suspension of
elastic spheres in a Newtonian fluid under extensional flow, and
derived an expression for the extensional stress of the suspension
as a function of the strain rate. In 1967, Roscoe [2] studied theoret-
ically the behavior of a dilute suspension of (visco)elastic spheres
in a Newtonian fluid subjected to shear flow, predicting that the
deformed particles attain a steady state, where they show an ellip-
soidal shape with a fixed orientation with respect to the flow; the

author also gave quantitative predictions of the deformation of the
suspended particles, the stress, and the viscosity of the suspension
as a function of the flow conditions and the constitutive properties
of the particles and the suspending fluid. In the same year, Goddard
and Miller [3] derived a constitutive equation for dilute suspen-
sions of slightly deformed elastic spheres. In 1981, Murata [4] stud-
ied the small deformation of an initially spherical elastic particle in
an arbitrary weak flow of a Newtonian fluid by means of a pertur-
bative analysis. Since then, very little has been done on elastic par-
ticles until the end of the last decade, when Gao and Hu [5]
performed 2D arbitrary Lagrangian Eulerian finite element method
(ALE FEM) simulations. In 2011, the same group [6] studied the
behavior of an initially spherical elastic particle suspended in a
Newtonian fluid in shear flow through a non-perturbative method
[7,8], coming to a validation and an extension of Roscoe’s results.
Very recently, Villone et al. [9] studied through 3D ALE FEM
numerical simulations the behavior of an initially spherical elastic
particle suspended in Newtonian and viscoelastic fluids under
unbounded shear flow, validating the results in [2,6] and studying
the effect of matrix elasticity on the dynamics and the steady state
of an elastic particle, in terms of deformation and orientation.

In the present paper, the behavior of an initially spherical elastic
particle suspended in a confined shear flow of a Newtonian and a
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viscoelastic liquid is studied by means of 3D ALE FEM numerical
simulations. Due to the applied flow, the particle deforms; in addi-
tion, the presence of solid walls in its vicinity can make it migrate
transversally to the streamlines of the suspending medium. Here,
the effects of the geometrical and physical parameters of the sys-
tem on both the deformation and the migration of the soft particle
in both the Newtonian and the viscoelastic matrix are investigated.

The paper is organized as follows: in Section 2, the scheme of
the problem and the governing equations are presented; in Section
3, some hints on the adopted numerical technique are given
(details being available in [9]); in Section 4, results are presented;
finally, in Section 5, some conclusions are drawn.

2. Mathematical model

In Fig. 1, a schematic drawing is reported of an initially spheri-
cal elastic particle suspended in a fluid under simple shear flow.
For both the soft particle and the suspending phase, it is assumed
that inertia can be neglected and that the volume is constant (i.e.,
the materials are incompressible). Therefore, the mass and
momentum balance for both phases reduce to

$ � u ¼ 0 ð1Þ

$ � r ¼ 0 ð2Þ

where u and r are the velocity vector and the stress tensor, respec-
tively. r can in turn be expressed as:

r ¼ �pI þ T ð3Þ

where p is the pressure, I is the identity tensor and T is the extra
stress tensor.

For the extra-stress tensor T , a constitutive equation has to be
specified. For a Newtonian matrix, we have

T ¼ 2gmD ð4Þ

with gm the viscosity, and D the symmetric part of the velocity gra-
dient tensor (D ¼ 1

2 ðruþruTÞ). For a viscoelastic matrix fluid we
write

T ¼ 2lmDþ s ð5Þ

with lm a viscosity and s the viscoelastic contribution to the extra-
stress. For s we adopt the Giesekus (Gsk) model [10], which is given
by

km s
O

þsþ am

Gm
s2 ¼ 2GmkmD ð6Þ

with km the relaxation time, Gm the modulus, and am the so called
‘mobility parameter’. The upper-convected derivative is defined by

s
O

¼ _s� ðruÞT � s� s � ru ð7Þ

The mobility parameter am modulates the shear thinning of the
Giesekus fluid, and it also induces a non-zero second normal stress
difference N2. For am ¼ 0, the Gsk model reduces to the Oldroyd-B
model, which has a constant viscosity of

gm ¼ lm þ Gmkm ð8Þ

(We use in any event the same symbol gm for the viscosity of the
matrix, be it Newtonian or viscoelastic). For the general Gsk model,
the viscosity becomes equal to gm only in the limit of zero shear
rate. If it is lm ¼ 0, the Gsk model reduces to the Upper Convected
Maxwell (UCM) model, whose constitutive equation reads

km s
O

þs ¼ 2GmkmD ð9Þ

Let us now introduce the constitutive equation of the particle.
Even if it is quite common to use a displacement-based formula-
tion for solids, our aim here is to maintain a conforming mesh
across the interface and a mesh updating scheme (ALE) avoiding
big mesh distortion within a short time. So, we decide to apply a
velocity-based approach also for the solid. To do this, we consider
the solid particle as a drop of UCM viscoelastic fluid with infinite
relaxation time kp !1 (more mathematical details are given in
[9]). Then, Eq. (9), with Gm replaced by Gp (and km replaced by
kp) simply becomes

s
O

¼ 2GpD ð10Þ

which is the neo-Hookean elastic model with a modulus Gp.
The balance equations that describe the system shown in Fig. 1

are solved with the following boundary conditions:

u ¼ ð�uw;0;0Þ on @X1 ð11Þ
u ¼ ðuw;0;0Þ on @X3 ð12Þ
uj@X2

¼ uj@X4
ð13Þ

tj@X2
¼ �tj@X4

ð14Þ
uj@X5

¼ uj@X6
ð15Þ

tj@X5
¼ �tj@X6

ð16Þ

Eqs. (11) and (12) are the adherence conditions on the matrix veloc-
ity on the lower and the upper walls of the flow cell, respectively;
Eqs. (13) and (14) express the periodicity of velocity and stress in
the matrix along the flow direction, where the traction t is defined
as: t ¼ r �m, with m the outwardly directed unit vector normal to
the boundary; finally, Eqs. (15) and (16) are the periodical condi-
tions on velocity and stress in the matrix along the vorticity
direction.

The boundary conditions on the particle–matrix interface S are:

ujm ¼ ujp ð17Þ

and

ðrjm � rjpÞ � n ¼ 0 ð18Þ

where n is the outwardly directed unit vector normal to the inter-
face. As an elastic solid is considered, no interfacial tension exists
between the suspended particle and the suspending fluid; if a visco-
elastic particle were investigated, on the contrary, the boundary
condition on the interface would include a term accounting for
interfacial tension (see, for example, Eq. (19) in [9]).

Since both the particle and the suspending medium are inertia-
less, no initial conditions on the velocities are required, whereas an
initial condition is needed on the extra-stress tensor. We assume
that the particle (and eventually the matrix, if it is viscoelastic) is
initially stress-free, which means:

sjt¼0 ¼ 0 ð19ÞFig. 1. Geometry of an initially spherical elastic particle suspended in a fluid under
shear flow.
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