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a Charles University in Prague, Faculty of Mathematics and Physics, Mathematical Institute of Charles University, Sokolovská 83, 186 75 Prague 8, Czech Republic
b Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA

a r t i c l e i n f o

Article history:
Received 12 January 2014
Received in revised form 22 April 2014
Accepted 25 May 2014
Available online 4 June 2014

Keywords:
Rate type fluid
Maxwell
Oldroyd-B
Burgers
Finite element method
Monolithic ALE method

a b s t r a c t

In this paper we study three boundary-initial value problems within the context of four rate type visco-
elastic constitutive models, the Maxwell model, the Oldroyd-B model, Burgers model and the generalized
Burgers model. We consider challenging problems wherein the boundary is deforming with time. The
flows lead to a complex system of partial differential equations that require the development of a robust
numerical procedure based on the arbitrary Lagrangian–Eulerian method.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The response of many viscoelastic fluids can be captured reason-
ably well by rate type fluid models. The earliest and widely used
rate type fluid model is that due to Maxwell [1] who developed a
one dimensional model. Later, Burgers [2] developed a one dimen-
sional rate type fluid model which includes the Maxwell model as a
special case. A proper framework to develop frame indifferent three
dimensional models was put into place by Oldroyd [3] and amongst
the several models that he proposed one that has become very pop-
ular is the Oldroyd-B model. Burgers’ one dimensional model
includes the one dimensional Oldroyd-B model as a special case.
These rate type models have been used to describe the behavior
of a wide spectrum of materials: dilute polymeric fluids, asphalt
and asphalt concrete, biological fluids, volcanic lava, glaciers, etc.

In view of their usefulness in describing the response of a wide
variety of materials, many boundary-initial value problems have
been solved within the context of these fluids. Usually the Maxwell
and Oldroyd-B models are used in the simulations and we mention
a few of them. For example, in a recent study, Damanik [4] in his
Ph.D. thesis simulated the flows of Oldroyd-B and Giesekus model

in a fixed domain in an Eulerian framework with FEM, he dealt
with flows at high Weissenberg number wherein one encounters
numerical difficulties that is referred to as the ‘‘High Weissenberg
number Problem’’ (for more details about this problem see for
example [5,6] or [7]) which is for example studied by Fattal and
Kupferman using LCR reformulation in [8]. One of the problems
he studied was the benchmark problem of a planar flow of the Old-
royd-B fluid around the cylinder where the drag force is computed,
this problem has been studied numerically in many papers using
both the finite element method and the finite volume method
(see for example [6,9,10] or the paper by [11]).

The problem of free-surface flow was studied by Étienne et al.
[12]; they studied the collapse of a column of Oldroyd-B fluid with
the help of arbitrary Lagrangian–Eulerian formulation for low/mod-
erate Weissenberg numbers. An alternative approach for a free sur-
face problem is used in Damanik et al. [13] where the level set
method is used for interface tracking between the viscoelastic bub-
ble and the surrounding fluid. This approach has the capability to
capture topological changes of the interface. We are also interested
in problems concerning flows of asphalt involving free and deform-
ing surfaces where one does not expect topological changes of the
interface. In general these materials have been notoriously difficult
to model (see the review article of Krishnan and Rajagopal [14] for a
discussion of the relevant issues) and the popular model of choice
for such materials is the model due to Burgers [2]. For the applica-
tions that we have in mind such as the compaction of asphalt layers,
etc., the flow takes place at low to moderate Weissenberg numbers
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and hence we shall study such flows. The most popular model for
describing the earth’s mantle is also the Burgers fluid model, and
as the model includes the Oldroyd-B and Maxwell models as special
sub-classes our study is relevant to a very large class of problems
wherein the boundary is undergoing time-dependent deforma-
tions. We solve problems with a deforming free surface by trans-
forming the equations from Eulerian description into arbitrary
Langrangian–Eulerian description. The way in which the equations
are transformed is very general and can be easily used for imple-
menting every viscoelastic rate type fluid model, even non-linear
models. We are mainly interested in simulating Burgers’ model
which has not been so far simulated when free surface is deforming
and which is capable of describing the response of material with
more than one relaxation mechanism.

The problems with the viscoelastic fluid model under consider-
ation is quite complicated and intricate as the constitutive relation
is given by an implicit equation that relates the stress and properly
invariant time derivatives of the stress and the symmetric part of
the velocity gradient and its properly invariant time derivatives.
Thus, unlike the classical theories of fluids such as the Euler fluid
or the Navier–Stokes fluid, or constitutive theories wherein one
has an explicit expression for the stress in terms of kinematical var-
iable, which will allow us to substitute the expression for the same
in the balance of linear momentum to obtain a partial differential
equation for the velocity field, we will have to solve the system of
equations comprising the constitutive equations and the basic bal-
ance laws simultaneously. The equations governing the flow of such
fluids in general three dimensional problems in finite domains are
most challenging and in this paper we consider three such prob-
lems that have relevance to interesting real world applications.

We consider three typical boundary-initial value problems. The
first problem that we consider is a block of viscoelastic material
that is initially at rest being subject to a compressive load on a part
of the top surface of the block at time t ¼ 0, and the compressive
load is removed after application for a certain time. We then study
the evolution of the deformation of the slab with time. This prob-
lem would correspond to a static load such as a parked vehicle. The
second problem concerns a generalization of the first wherein we
consider repeated application of compressive loads at two different
locations on the top surface of the slab. This situation would corre-
spond to the important technological problem of rutting of road-
ways, wherein a depression is observed in a portion of the
roadways due to the repeated motion of vehicles. In the last prob-
lem, we consider a load that is moving on the top surface. This
problem is relevant to the rolling of asphalt due to a roller, when
the roadway is being built, or due to a moving vehicle.

The organization of the paper is as follows. In the next section,
we introduce the Burgers model and a generalization of it. These
models contain as special sub-classes two rate type models that
are capable of describing the response of viscoelastic fluids: the
Maxwell model and the Oldroyd-B model, and generalizations of
the same. In Section 3 we discuss the numerical procedure, see
for example the book by Crochet et al. [15] for relevant background.
After a brief discussion of the unsuitability of the Lagrangian method
to study the problem, we discuss the Arbitrary Lagrangian–
Eulerian method that is used to simulate the three boundary-initial
value problems discussed above. In the final section, we discuss the
solution to three boundary-initial value problems.

2. Some standard incompressible viscoelastic rate type fluid
models

In this section we introduce the incompressible viscoelastic
rate-type fluid models that are used in the simulations due to time
varying loads on the boundary. Since we consider incompressible
fluids, they can only undergo isochoric motions and hence

div v ¼ 0; ð1Þ

where v is the fluid velocity. The balance of linear momentum is in
the form

q
@v
@t
þ ðrvÞv

� �
¼ div T; ð2Þ

where q is the density and T is Cauchy stress tensor which is sym-
metric due to the balance of angular momentum in the absence of
internal body couples.

Maxwell model. Maxwell [1] derived the earliest one dimen-
sional fluid model which when appropriately generalized to three
dimensions, in the case of an incompressible fluid, can be written
in the form:

T ¼ �pIþ GðB� IÞ; ð3aÞ

B
O

¼ 1
s
ðI� BÞ; ð3bÞ

where instead G is elastic modulus, s is the relaxation time and O is
the upper convected Oldroyd derivative defined through

B
O

¼ @B
@t
þ ðrBÞv � ðrvÞB� BðrvÞT; ð4Þ

where ðrvÞij ¼
@vi
@xj

.

Oldroyd-B model. Oldroyd-B model was derived by Oldroyd [3],
compared to Maxwell model the Cauchy stress tensor T is in the
form

T ¼ �pIþ 2gsDþ GðB� IÞ; ð5Þ

where gs is the solvent viscosity and B satisfies (3b).
Burgers model. Before Oldroyd, Burgers [2] had developed a one

dimensional rate type constitutive relation which when properly
generalized to three dimensions can be expressed as

T ¼� pIþ S; ð6aÞ

Sþ k1 S
O

þk2 S
OO

¼g1Dþ g2 D
O

; ð6bÞ

where k1; k2;g1 and g2 are material parameters. This model includes
both the Maxwell models and the Oldroyd-B models as special sub-
classes. The three dimensional Burgers model can be expressed as a
multimode (2-mode) Maxwell model (see [14]):

T ¼ �pIþ G1ðB1 � IÞ þ G2ðB2 � IÞ; ð7aÞ

B
O

1 ¼
1
s1
ðI� B1Þ; ð7bÞ

B
O

2 ¼
1
s2
ðI� B2Þ; ð7cÞ

where G1;G2 are elastic moduli and s1; s2 are relaxation times and
so this model is capable of capturing two different relaxation mech-
anisms (compared to Maxwell or Oldroyd that are capable of cap-
turing only one).

A modified Burgers model with additional Newtonian dissipation.
We will use also the Burgers model with additional Newtonian
dissipation

T ¼ �pIþ 2gsDþ G1ðB1 � IÞ þ G2ðB2 � IÞ; ð8aÞ

B
O

1 ¼
1
s1
ðI� B1Þ; ð8bÞ

B
O

2 ¼
1
s2
ðI� B2Þ: ð8cÞ

One notices that Oldroyd-B model (5) reduces to a Maxwell
model (3) when gs ¼ 0 Pa s, the same holds for the generalized
Burgers model (8) and Burgers model (7). Further, Burgers (7)
reduces to Maxwell model (3) if s1 ¼ s2 ¼ s and G ¼ G1 þ G2 if
we have the same boundary and initial conditions for B1 and B2.
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