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a b s t r a c t

The flow dynamics of an upper-convected-Maxwell (UCM) falling film down a flexible vertical wall is
studied in the limit of weak viscoelasticity. A set of Benney-like weakly nonlinear equations for the film
thickness and wall deflection, which is valid for small flow rate, is derived based on the long-wave theory.
It shows that the unstable role of liquid viscoelasticity is equivalent to that of the flow inertia. A set of
asymptotic evolution equations valid for moderate flow rate is obtained based on the integral theory.
The linear instability property of the system is examined by using a normal-mode analysis. It shows that
the liquid viscoelasticity acts to destabilize the falling film even for the flow with inertia being negligible.
The nonlinear evolution equations for the moderate flow rate are solved numerically. The spatio-tempo-
ral evolutions of the liquid–air interface and flexible wall are examined. It is concluded that the liquid
viscoelasticity plays a role to strengthen the dispersion of the initial imposed perturbation. It can pro-
mote the traveling speed of the solitary-like humps and suppress the front-running ripples at the same
time. Both the wall damping and wall tension acts to suppress the fluctuations of the flexible wall. How-
ever, they play different roles in the evolution of the liquid–air interface.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Falling film occurs in various technical processes, environmen-
tal sciences and everyday life [1–3]. It has been studied over past
decades both experimentally and theoretically. Much of this work
has been summarized in a book [4]. For the flow with small Rey-
nolds number, it is feasible to develop a long-wave weakly nonlin-
ear equation like Benney [5] or Kuramoto–Sivashinsky [6]
equation. For the flow with moderate Reynolds number, a coupled
system of evolution equations for the film thickness and volumet-
ric flow rate can be derived alternatively [7]. Khayat [8] studied the
influence of substrate topography on the transient flow field of the
coating film. It was concluded that the topography of the substrate
has a drastic effect on the flow of film. The studies cited in the brief
review above have all considered the liquid film flowing over a
rigid wall. In recent years, the dynamics of falling film over flexible
walls are of interest since it occurs in a wide range of situations.
These include the modeling of airflow in pulmonary airways
[9,10], the use of rubber-covered rolls to reduce defects in a coating
process [11,12], and so on. It is expected that the wall flexibility
can have a considerable effect on dynamics of the falling film
[13]. Matar et al. [14] considered the dynamic behavior of falling

Newtonian liquid-film over a flexible wall. Based on the long-wave
theory, a set of coupled equations for the film thickness and sub-
strate deflection was derived with a small flow Reynolds number.
In addition, a set of equations coupled for the film thickness, sub-
strate deflection and film volumetric flow rate was also presented,
which is valid for moderate Reynolds numbers. It was pointed out
that decreasing the wall damping and/or wall tension can promote
the development of chaos or severe substrate deformation. Sisoev
et al. [15] revisited this problem with evolution equations being
re-derived through the Shkadov approach. The results can be
reducible to those for the flow of a falling film on a rigid wall.

A vast majority of studies on thin-film flow problems were
devoted to the flow of Newtonian fluid. The film flow of non-New-
tonian fluid attracted less attention over the past. In recent dec-
ades, the flow of viscoelastic fluid, a subclass of non-Newtonian
fluids, has emerged as a research subject of great interest. The vis-
coelastic nature of most polymeric fluids can give rise to new
mechanisms, which can affect the flow instability caused by capil-
lary or inertial forces [16]. From a purely fluid dynamical stand-
point, the viscoelastic fluid exhibits a great deal of influence on
the normal and shear stresses in flow film. It is expected that the
liquid viscoelasticity can have a considerable effect on dynamics
of falling film. On a more applied level, viscoelastic fluids are
widely used in analysis to characterize the lubrication behaviors
of bearings, gears and cams. Gupta [17] studied the instability
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properties of a falling viscoelastic liquid film and concluded that
the viscoelasticity can destabilize the film flow. Similar results
were also obtained by Shaqfen et al. [18] for the film flow with
small Reynolds number. However, for moderate Reynolds num-
bers, it was pointed out that the viscoelastic effects are primarily
stabilizing. Andersson [19] considered the steady laminar film flow
of viscoelastic Walters’ liquid down a vertical wall. The resulting
analytical expression for the film thickness reveals that the visco-
elastic film grows up faster towards the downstream asymptotic
traveling wave state than that of the Newtonian film. Khayat
[20,21] studied the effect of substrate topography on the flow of
Oldroyd-B film. It was concluded that the topography of the sub-
strate has a drastic effect on film flow. Besides, they also claimed
that the liquid elasticity had a significant effect on both the steady
state and transient behavior of the system. Sergey [22] studied the
viscoelastic flow over a step-down topography in the presence of
inertia. It was pointed out that liquid viscoelasticity has a mono-
tonically decreasing effect on the height of a capillary ridge. Pavli-
dis et al. [23] simulated the flow of the viscoelastic film, which was
modeled with an exponential Phan-Thien and Tanner (ePTT) con-
stitutive equation, over 2D topography by using a mixed finite-ele-
ment method. Again, for the flow with weak viscoelasticity, it was
concluded that the capillary ridge decreases with increasing of vis-
coelasticity. However, for the flow with relatively strong viscoelas-
ticity, the situation is reversed because the shear and elongation
thinning become more important.

In this study, we consider a viscoelastic free-surface liquid film
flows over a flexible wall. It extends Matar et al. [14]’s analysis to
include the effect of the liquid viscoelasticity. The upper-con-
vected-Maxwell (UCM) constitutive equation is adopted to model
the viscoelastic liquid. For flexible wall, the effects of wall damping
and tensions are included with the wall inertia being neglected.
This is the simplest system which couples a restoring force with
the normal force imposed by the fluid, while the bending stresses
are neglected. The effects of flexible wall and liquid viscoelasticity
on the film dynamics are mainly concerned. The structure of the
paper is as follows. In Section 2, we use the long-wave theory to
derive a pair of coupled equations for film thickness and wall
deflection, which is valid for small flow rate. For moderate flow
rate, alternatively, a set of asymptotic evolution equations for the
film thickness, volumetric flow rate and the wall deflection is
obtained by using the integral theory. In both cases, the linear
instability analysis is presented in Section 3. The numerical solu-
tions to the nonlinear system are presented in Section 4, and some
concluding remarks are given in Section 5.

2. Formulation

2.1. Governing equations

We consider a two-dimensional incompressible viscoelastic
UCM liquid film flow down an infinitely long vertical flexible wall
under the effect of gravity force, as illustrated in Fig. 1. Cartesian
coordinate system ðx; yÞ is introduced with the x axis oriented
downwards along the non-perturbed wall. The y axis denotes
the normal direction. The liquid film with density q and viscosity
l occupies the region fðx; tÞ 6 y 6 gðx; tÞ and is bounded by an
inviscid gas. gðx; tÞ and fðx; tÞ denote the position of liquid–air
interface and flexible wall, respectively. Thickness of the undis-
turbed film is assumed to be h0. Flow in the liquid film can be
modeled by using continuity and Navier–Stokes equations, which
are given below

@u
@x
þ @v
@y
¼ 0; ð1Þ

q
@u
@t
þ u

@u
@x
þ v @u

@y

� �
¼ � @p

@x
þ @rxx

@x
þ @ryx

@y
þ qg; ð2Þ

q
@v
@t
þ u

@v
@x
þ v @v

@y

� �
¼ � @p

@y
þ @rxy

@x
þ @ryy

@y
: ð3Þ

Here, p and q denote the pressure and density, g is the gravitational
acceleration, which is assumed to be along x direction, u and v rep-
resent the flow velocity in x and y direction, respectively.
rxx;rxy;ryx and ryy denote the component of deviatoric stress ten-
sor with ryx equaling to rxy. For UCM fluid, we have the following
expressions [24]
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where k is the relaxation time and l is the zero-shear-rate viscosity.
The flexible wall is assumed to be infinitely long. The wall deflection
along x direction is ignored since the wall is assumed to be tethered
and only the long-wavelength perturbations are considered in this
study. Corresponding dynamics are governed by a forced membrane
equation [3,9]
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Here, the definition of fx is fx ¼ @f=@x. qw , Hw and a denote the den-
sity, thickness, and damping coefficient of the flexible wall. Tw is the
wall tension, which remains uniformly across the thickness. pw rep-
resents the pressure external to the wall and is assumed to be zero
without loss of generality.

Fig. 1. Schematic of the problem.
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