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This paper proposes an intuitive computational multi-scale homogenisation procedure and tool for the
estimation of the effective static and mechanical properties of complex viscoelastic composite material
and structures. The proposed solution consists in computing numerically the complex effective proper-
ties (storage and loss moduli) as function of frequency. The developed numerical tool is coupled with
ABAQUS FEA in order to ease the uptake of the technology code and allows for an accurate and automatic
simulation of composite engineering structures with substantially less human intervention and a rational
control of the error. Details concerning the numerical implementation and a selection of representative
numerical examples are provided.
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1. Introduction

Structural vibrations control is of primary importance for
enhancing safety and improving structures and systems perfor-
mances. The most prevalent strategy for structural vibration
damping is the one that consider adding viscoelastic inhomo-
geneities either as thin layers or as dilute inclusions depending
on the practical considerations. These composite materials and
structures yield superior vibrational energy absorption capability.
They particularly offer the advantage of high damping, low cost,
ease of implementation with low weight.

Analytical studies were devoted to simple structures and finite
element simulations were introduced to design structures with
complex geometries and generic boundary conditions. Most analy-
ses use a complex frequency-independent dynamic modulus to
describe the rheological behaviour of viscoelastic materials. How-
ever, it is widely known from engineering practice, that the storage
and loss moduli of viscoelastic materials are strongly frequency
and temperature dependent. This dependence is especially signifi-
cant for elastomers and polymers, such as those used in laminated
composites. A comprehensive review of the various research meth-
ods and theory calculation models could be found in the very
recent review by Zhou [1].
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Nevertheless, viscoelasticity is not the only mechanism for
damping. As a matter of fact, defects and interfaces can also con-
tribute to damping vibrational dissipating energy. Therefore, the
micro-structure greatly affects the damping ability of a material.
Consequently, new materials with tailored micro-structure have
attracted increased interest because of the possibility to control
both their stiffness and damping characteristics i.e. loss modulus.
In parallel, the recent advancements in micron-level additive man-
ufacturing have enabled unprecedented accuracy in controlling the
material architecture resulting in an unrestricted number of possi-
bilities for multi-scale material design. In view of acceptance of
these new composite materials for vibration damping, the develop-
ment of models and numerical solutions and tools is obvious. It is
through these models that the effect of shapes, sizes and location
of phase inclusions on the dynamical properties can be
investigated. These models should be capable of correlating the
micro-structural response with the overall macroscopic dynamical
behaviour since the applied loads are at the structural level.

A series of micro-mechanical approaches for the estimation of
the damping properties of composite materials, as a function of
the properties of the constituent materials have been developed
in [2-12]. Generally, the effective behaviour of the viscoelastic
composite in the time domain is obtained using a combination of
the correspondence principle with the homogenization solution
of the corresponding elastic problem. Then, the solution of the
viscoelastic effective properties is obtained using the Laplace Car-
son transform technique. This permits transferring a viscoelastic
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problem into a symbolic elastic problem with known solution. The
main technical issue when using these analytical methods towards
up-scaling of viscoelastic properties of composites, is performing
the inverse Laplace transform since the expressions of the effective
properties in the Laplace space are not rational fractions as func-
tions of the Laplace variable. Even sophisticated approaches have
been developed and used, such as in [13,14], to perform the inverse
transform, basically, all these analytical and semi analytical meth-
ods are restricted to canonical micro-structure shapes like sphere
or cylinder like shapes. Recent works proposed the use finite
element method (FEM) solution in multi-scale context where the
macroscopic parameters are obtained by volume averaging over
statistically representative volume which are then used at the
macroscopic level [15-21]. This latter numerical framework can
be an alternative approach to answer the previous drawbacks. Typ-
ically, this approach is based on a hierarchical decomposition of
the solution space into a local solution and a global one and by
enforcement of the solution compatibility conditions.

A multilevel finite element methodology is introduced where
the hierarchical character of model description and simulation
results are exploited to expedite the analysis of problems. This
makes it ideal for local/global analyses where solutions from a
local model, i.e. the micro-structure, are used to derive the solution
for the global model of the structure. In this paper, an intuitive
numerical procedure for the estimation of the effective properties
of the viscoelastic composites is developed and a computational
multilevel methodology and tool for the prediction of dynamical
properties of composite structures is proposed as an alternative
to the direct simulation which requires enormous computing
resources. The proposed solution consists of computing numeri-
cally the complex effective proprieties (storage and loss moduli)
as function of frequency. This is obtained using a steady state
dynamic direct solver with a sweep over the frequency band of
interest and then simulating the Mechanical Impedance (MI) [22]
test for an equivalent homogeneous structure in order to predict
the spectral response in terms of driving point mobility. When
compared to the direct numerical simulation, this method ensures
a considerable saving in computational effort. The method is suit-
able to deal with composites with complex micro-structure and to
cope with the inaccuracy of traditional constitutive relations. It is
also suitable and effective to simulate composites with high vol-
ume fraction. Hence, it allows for tailoring the effective properties
to specific application requirement. The developed numerical tool
is coupled with ABAQUS FEA in order to ease the uptake of the
technology code and allow for automatic simulation of complex
3D composite engineering structures and boundary conditions.
Details concerning the numerical implementation and a selection
of representative numerical examples are provided.

2. Multi-level FEM approach and problem formulation

The multilevel principle assumes that if a heterogeneous struc-
ture (Q) contains evenly distributed micro-topologies, a Represen-
tative Volume Element (RVE) (Qgvr < Q) can be, then, defined
where the averaged micro-structural behaviour can be smeared
as an homogeneous one over the macroscopic domain (Q) (see
Fig. 1). A concise description of the particular technique of multi-
level finite element method, that constitutes the first significant
part of the approach described in the current work, can be found
in[17,19,21].

2.1. Problem at the macro-scale

The problem at the macro-scale is governed by the equation of
motion, which is an expression of Newton’s second law:
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Fig. 1. Schematic representation of the multilevel multi-scale approach.
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denotes the macroscopic value, x is the vector position and t is
the time. p stands for density. The composite material is considered
as viscoelastic, thus the stress a(x, t) is related to the strain €(x, t) by
the Boltzmann convolution integral:

o-fen-o;

while t is the instant of loading, T spans the history time and C is the
relaxation modulus. If we apply the Laplace-Carson transformation,

ZfO)=f ) =p fo t)e Ptdt, to the convolution integral in Eq.
( ), the constltutlve relatlon becomes a simple tensor contraction
in the Laplace-Carson space:
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with p= o +iw and i = v—1. a is an arbitrary real value and the
Laplace-Carson domain is, then, the frequency domain.
C*(p) = C(w) is the complex fourth order tangent modulus tensor:

C(w) = C'(w) +iC"(w) (4)

where @ is the angular frequency. By considering the excitation
force to be a monochromatic plane wave, the displacement field
in the medium is also a monochromatic plane wave:

HoE® T)dT (2)

U(x,t) = U(x) exp(—imt) (5)

By replacing the displacement form in Eq. (5) and the constitu-
tive law in Eq. (4) in the governing equation, Eq. (1), the time-free
wave equation of elasto-dynamics is obtained:

P(U u1 + 6} yklaluk fi (6)

This system can be solved using a numerical perturbation pro-
cedure, where the perturbed solution is obtained by a linearisation
in the current base state. Structural and viscous damping can be
included in the numerical procedure using the Rayleigh and struc-
tural damping coefficients. Besides, global damping coefficients
can be specified at the procedure level to define additional viscous
and structural damping contributions. In the context of a multi-
level finite element analysis, the stress field at the macro-scale
level can be computed by solving a local nonlinear finite element
problem.
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