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a b s t r a c t

Composite laminated plates are structural elements with a high strength/weight ratio, being very popular
in the aeronautic industry. This work analyses such structural elements using the finite element method,
an approximation meshless method (the element free Galerkin method) and three interpolation meshless
methods (the radial point interpolation method, the natural neighbor radial point interpolation method
and the natural radial element method). Here, the displacement field of the plate is defined by an equiv-
alent single layer theory – the first-order shear deformation theory (FSDT). Thus, a brief theoretical
description of the advanced meshless techniques extended to the analysis of composite plates, consider-
ing a weak-form approach combined with the FSDT, is presented. In the end, several composite laminates
are analyzed and the results obtained with the distinct numerical approaches are compared and dis-
cussed. The results show that meshless methods are capable to efficiently analyze composite laminated
plates submitted to static loads under linear elastic regimes.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated composite materials are a class of advanced materi-
als, which have been an important research topic in computational
mechanics in the last years. These materials are extensively used
by the transportation industry and particularly applied by the
aeronautic industry. The main advantage of laminated composite
materials are the evidenced exceptional mechanical properties,
such as the high strength/weight and stiffness/weight ratios. Being
a heterogeneous material, made by a combination of a matrix
material and a layered reinforced material, it is important to
develop efficient numerical techniques capable to predict accu-
rately the deformation, strain and stresses fields of structural ele-
ments using laminated composites materials. These numerical
models have a high practical relevance, since they allow to achieve
optimal designs for industrial applications.

In this work the laminate composite plate problem is formu-
lated considering the first-order shear deformation theory (FSDT)

presented in the early works of Reissner [1] and Mindlin [2], which
is an equivalent single layer plate theory assuming first order dis-
placement functions and considering a shear correction factor for
attenuating the non-zero transverse shear strain on the top and
bottom surfaces.

Nowadays, the finite element method (FEM) is the most popular
numerical method in computation mechanics [3] and the most
common approximation technique used to analyze composite lam-
inated plates [4]. The FEM divides the continuum solid domain
with a finite number of elements, respecting a pre-establish config-
uration which can be adapted to the discretized solid domain. The
simple discretization concept of the FEM is its major advantage.
Nevertheless, the FEM is a mesh-based approximation method,
which can bring disadvantages in some computational mechanics
fields, such as the ones requiring a constant update of the dis-
cretization mesh. For instance: in the large deformation problems,
the extraordinary mesh distortion decreases the FEM accuracy and
the FEM solution stability; in the explicit fluid flow analysis, the
constant mesh update increases significantly the computational
cost; and in the crack propagation path problem, the moving dis-
continuity requires a local re-meshing.

Thus, recently, advanced discretization meshless techniques
started to arise [5,6]. Capable to answer to some of the FEM
drawbacks, the meshless discretization techniques (commonly
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known as meshless methods) present relevant advantages when
compared with the FEM [7]. To name a few, the shape functions
of meshless methods present virtually a higher order, which per-
mit a higher continuity and reproducibility, and have compact sup-
port. Meshless methods are capable to handle problems showing a
transient geometry, such as crack propagation and phase transfor-
mation problems. Additionally, meshless methods are capable to
achieve a more accurate approximation (when compared with
low order FEM) and permit to add (or remove) easily nodes to
the discretization set, facilitating the refinement procedure.

Nevertheless, FEM and meshless methods are not incompatible,
both can be combined to achieve superior computational perfor-
mances [8].

The generic meshless method formulation permit to discretize
the problem domain with an unstructured nodal distribution cov-
ering the studied physical domain. In the FEM, the shape functions
are constructed at the element level, which is the basic structure
defining the nodal connectivity in the FEM. Differently, in the
meshless methods, the shape functions are obtained for a flexible
set of nodes, known as influence-domain, which can possess a vari-
able size and shape along the discretized domain. It is the overlap
of the influence-domains that permit to impose the nodal connec-
tivity and define the field function applicability space [9].

In the literature, it is possible to find several research works
extending meshless methods to the analysis of solid mechanics
problems using the strong formulation [10,11]. Nevertheless, in
this work, only meshless method approaches combined with the
Galerkin weak formulation are considered.

Commonly, meshless methods with compact support are
divided in two classes: approximation meshless methods and
interpolation meshless methods. Approximation meshless meth-
ods appeared first, as for example the smoothed particle hydrody-
namics (SPH) [12], based in the kernel estimation [13]. The SPH is a
meshless method widely used to solve free surface flow problems
[14]. Considered by many as the first mature meshless method for
solid mechanics, the diffuse element method (DEM) [15] con-
structs the approximation shape functions using the moving least
square (MLS) approximants [16]. Afterwards, Belytschko and co-
workers improved the DEM and developed one of the most popular
meshless method, the element free Galerkin method (EFGM) [17].
In the same period, the SPH was modified to suit the demands of
solid mechanics problems, originating the reproducing kernel par-
ticle method [18], and the meshless local Petrov–Galerkin method
(MLPG) was developed [19].

Although the proven success in computational mechanics of
approximation meshless methods, these numerical techniques
are not capable to produce shape functions possessing the delta
Kronecker property, which hinders the numerical imposition of
essential and natural boundary conditions. At the time, the major-
ity of the meshless method community answered to this drawback
researching and developing meshless methods with interpolation
functions. Thus, several interpolation meshless methods were cre-
ated, such as the elegant natural element method [20,21], using the
natural neighbor mathematical concept to impose the nodal con-
nectivity and the Sibson interpolation technique to construct the
shape functions.

Another very popular interpolation meshless method is the
Point Interpolation Method (PIM) [22], capable to be unfolded in
several efficient versions [23]. One of this version, and certainly
the most applied in computational mechanics, is the Radial Point
Interpolation Method (RPIM) [24], which combines the polynomial
basis of the PIM with a radial basis function. More recently, the
RPIM was combined with the NEM and a new truly meshless RPIM
approach was born, the natural neighbor radial point interpolation
method (NNRPIM) [25,26,9]. Belinha and co-workers simplified the
NNRPIM and delivered an interpolation meshless method

combining the low-order connectivity of the FEMwith the geomet-
ric flexibility of a meshless method [27–29].

In the literature, it is possible to find several studies regarding
the analysis of plates and laminated plates using meshless meth-
ods. In an early study, Donning and Liu presented an efficient
meshless approach to analyze thick plates avoiding the shear-
locking effect [30]. Afterwards, the EFGM was combined with the
FSDT [31] and several creative numerical techniques to attenuate
the shear-locking phenomenon were presented [32–34]. Other
meshless approaches were extended to the analysis of thick plates
considering the FSDT [35–37,26,28].

Regarding the study of laminated plates using the FSDT, in the
literature it is possible to find several meshless studies
[38,34,26,29], some of them considering the material non-linear
behavior [39].

In this work, the performance of distinct meshless techniques is
compared. Thus, a computational framework, capable to analyze
composite laminated plates assuming the FSDT, was written in
Matlab� for each one of the numerical approaches: FEM, EFGM,
RPIM, NNRPIM and NREM. Since all methodologies were pro-
grammed following the same layout, the framework permits a
more pragmatic comparison regarding the performance and the
accuracy of each numeric approach.

2. Meshless methods

The generic meshless method procedure to analyze numerical
problems ruled by integro-differential equations is as follows. First,
the problem domain X 2 R2, bounded by a physical boundary
C � X, is fully discretized with a nodal set N ¼ fn0;n1; . . . ;nNg scat-
tered in the space domain: X ¼ fx1; x2; . . . ; xNg 2 X. Then, depend-
ing on the meshless method, a nodal dependent, or independent,
background integration mesh is constructed. Afterwards, the nodal
connectivity is obtained for each interest point (integration point)
with the influence-domain concept. The shape functions are con-
structed using approximation or interpolation functions and then,
the global system of equations is established. In this section, a brief
description of these steps is presented.

2.1. Nodal connectivity

The nodal connectivity in FEM is established in the pre-
processing phase by the numerical construction of a predefined
finite element mesh. Thus, the nodes forming each element inter-
act directly with each other. Additionally, the nodes belonging to
the geometric boundary of each element interact with the nodes
of neighbor finite elements.

In meshless methods there is no predefined nodal connectivity.
Instead, the nodal interdependency is enforced with the
‘‘influence-domain” geometric construction, which is obtained
after the nodal discretization [9]. It is the overlap of the
influence-domains that permits to establish the nodal connectivity
in several meshless methods.

Generally, influence-domains are obtained by searching radially
enough nodes inside a fixed area (2D problems) or a fixed volume
(3D problems). Since this technique is very simple to understand
(and to implement), it has been used to support the development
of several meshless techniques [6,7,9], Fig. 1.

Nevertheless, it has been observed that the performance of the
meshless method is influenced by the size or shape variation of
these influence-domains along the problem domain [9]. Thus,
regardless the used meshless technique, the literature suggests
that each 2D influence-domain should possess approximately
n ¼ ½9;16� nodes [9]. Both the EFGM and the RPIM use this
concept.
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