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a b s t r a c t

Despite the experimental observation of shear-thinning rheological behavior depending on the nanopar-
ticle volume fraction, nanofluids were treated as either Newtonian or viscoelastic fluids in previous stud-
ies on thermal convection. In this work, taking into account the shear-thinning rheology, Brownian
diffusion and thermophoresis of nanofluids, the onset of thermal convection in a nonhomogeneous nano-
fluid-saturated porous layer with throughflow is investigated. The power-law model is adopted to
describe the shear-thinning behavior of nanofluids. The combined effects of Lewis number, Péclet num-
ber and power-law index on the thermal instability are analyzed. It is found that the most unstable per-
turbations are transverse rolls, and both traveling-wave and oscillatory modes may occur. The critical
Rayleigh number can be significantly reduced or increased with the increasing power-law index, mainly
depending on the value of Péclet number. Furthermore, the decrease of Lewis number can promote or
suppress the onset of thermal convection, depending on whether the nanoparticle distribution at the
basic state is bottom-heavy or top-heavy.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The term ‘‘nanofluid’’ was first coined by Choi [1], which refers
to the mixture of a base fluid (water, oil, etc.) and a small amount
of suspended metallic or metallic oxide nanoparticles (Cu, CuO,
Al2O3, etc.) with the diameter varying between 1 to 100 nm.
Recently, the study of nanofluids has been of growing interest for
the observation of its novelty, including the significant enhance-
ment of effective thermal conductivity, abnormal viscosity
increase and abnormal single-phase convective heat-transfer coef-
ficient increase relative to the base fluid [2–5]. The heat transfer
enhancement of nanofluids may throw light on the urgent cooling
problems and thermal energy storage systems in engineering [6].

Several attempts have been made to explain the abnormal
characteristic feature of nanofuilds [7–10], but a satisfactory expla-
nation is yet to be found [11]. Buongiorno [12] made an explana-
tion for the abnormal convective heat transfer enhancement
observed in nanofluids. He concluded that the Brownian diffusion
and thermophoresis are important slip mechanisms in nanofluids,
and developed a two-component four-equation nonhomogeneous
equilibrium model for mass, momentum, and heat transport in

nanofluids. Based on the Buongiorno’s model, thermal convection
of nanofluids has received considerable attention. Thermal convec-
tion of nanofluids for the Rayleigh–Bénard problem in non-porous
media and the Horton–Rogers–Lapwood problem in porous media
was discussed by many researchers [13–18]. Those studies treated
the nanofluids as either Newtonian fluids or viscoelastic fluids.

However, recent experimental result shows a shear-thinning
rheological behavior of nanofluids [19]. For describing the shear-
thinning rheology, the power-law model is a good choice

s ¼ g _cj jn�1 _c; ð1Þ

where s is shear stress, _c the shear rate, g the consistency factor and
n the power-law index. Pak and Cho [20] measured the viscosities of
Al2O3-water and TiO2-water nanofluids as functions of the shear
rate. Their experimental results reveal that the appearance of the
shear-thinning behavior depends on the species of the nanoparticle
and the nanoparticle volume fraction. Table 1 shows the values of g
and n as a function of volume fraction / for the Al2O3-water nano-
fluid [21].

Although the shear-thinning effect can be obviously observed in
experiments and plays an important role in calculation of heat
transfer rate [22], there exist few studies on thermal convection
of power-law nanofluids. Nield [23] made some discussion on
the onset of thermal convection in a porous medium saturated
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by a power-law nanofluid, but no quantitative result was given. On
the other hand, in study of thermal convection it is of great signif-
icance to determine the criterion for the onset of convection in
terms of the critical Rayleigh number. If the Rayleigh number is
lower than the critical value, heat transfer is dominated by conduc-
tion; but when the Rayleigh number exceeds the critical value,
thermal convection sets in and heat transfer rate is enhanced a
lot [24].

In this work, taking into account the shear-thinning behavior,
Brownian diffusion and thermophoresis effects of nanofluids, we
study the thermal convection in a power-law nonaofluid saturated
porous layer with throughflow. The critical Rayleigh number and
convective modes are determined by performing the linear stabil-
ity analysis.

2. Formulation of the problem

We consider a horizontal porous layer with thickness H, satu-
rated by a nanofluid. The porous medium is heated from below
with a constant temperature difference DT ¼ Th � Tc across the
thickness, and is subject to a stationary, horizontal and uniform
throughflow ub.

2.1. Momentum equation

For a Newtonian fluid, the constitutive relation between extra
stress and strain rate is given by

s ¼ l _c; ð2Þ

where l is the Newtonian viscosity. In modeling flows of a Newto-
nian fluid in porous media, the simplest but most widely used
model in engineering is the well-known Darcy equation

l
K

u ¼ �rpþ qg; ð3Þ

where u is the Darcy velocity, K the permeability, q the density of
fluid and g the gravity acceleration.

In the present study, the nanofluid is treated as a power-law
non-Newtonian fluid. Consequently, the Darcy Eq. (3) needs to be
modified to model power-law fluids in porous media. The power-
law constitutive Eq. (1) can be rewritten in the same form of Eq.
(2) in terms of an effective viscosity

s ¼ le
_c; ð4Þ

with the effective viscosity

le ¼ g _cj jn�1
: ð5Þ

To extend the Darcy equation to modelling flows of a power-law
fluid in porous media, it is assumed that the non-Newtonian effect
can be subsumed in a suitable definition of l in Eq. (3) [25]. In view
of Eq. (5) and on dimensional grounds, many researchers proposed
that the modified l for power-law fluids in porous media can be
given by l ¼ g uj jn�1 [25–27]. Thus, for a power-law fluid-saturated
porous media, the classical Darcy equation is generalized as

g
K�

uj jn�1u ¼ �rpþ qg; ð6Þ

where g is the consistency factor(SI unit is Pa sn), K� is the general-
ized permeability(SI unit is mnþ1).

For a nonafluid, the density q in Eq. (6) is defined as

q ¼ /qp þ ð1� /Þqf ; ð7Þ

where / is the volume fraction of nanoparticle, qp the density of
nanoparticle, qf the density of base fluid. In light of the Ober-
beck–Boussinesq approximation, the buoyancy term in Eq. (6)
beomes

qg ¼ /qp þ ð1� /Þq0 1� bðT � TcÞ½ �
n o

g; ð8Þ

where b is the volumetric expansion coefficient and q0 is the refer-
ence density of base fluid at temperature Tc .

2.2. Mass conservation equations

The mass conservation equation for nanoparticles in the
absence of chemical reactions is given by

@/
@t
þ 1

e
u � r/ ¼ � 1

qp
r � jp; ð9Þ

where e is the porosity of porous matrix and jp is the diffusion mass
flux for the nanoparticles.

The Buongiorno’s model treats the nanofluids as a two-compo-
nent mixture (nanoparticles + base fluid) [12]. Accordingly, relative
to the flow velocity u, nanoparticles also display Brownian motion
and thermophoresis due to their size on nanoscale. The Brownian
motion is proportional to the volumetric fraction of nanoparticles
in the direction from high to low concentration, and the thermo-
phoresis is proportional to the temperature gradient from hot to
cold. Thus, jp consists of two diffusion terms

jp ¼ jp;B þ jp;T ; ð10Þ

where jp;B and jp;T denote nanoparticle flux due to Brownian diffu-
sion and thermophoresis, respectively, which can be calculated as

jp;B ¼ �qpDBr/; jp;T ¼ �qpDT
rT
Tc

; ð11Þ

where DB is the Brownian diffusion coefficient and DT is referred as
thermophoretic diffusion coefficient.

With the help of Eqs. (10) and (11), the mass conservation Eq.
(9) finally reduces to the following form

@/
@t
þ 1

e
u � r/ ¼ DBr2/þ DT

Tc
r2T: ð12Þ

Furthermore, the continuity equation for the nanofluid is given
by

r � u ¼ 0: ð13Þ

2.3. Energy equation

The energy equation for nanofluids in porous media can be
given by

ðqcÞm
@T
@t
þ ðqcÞf u � rT ¼ �r � qþ ehpr � jp; ð14Þ

where hp ¼ cprT is the specific enthalphy of nanoparticles. q is the
energy flux relative to the flow velocity u, which can be calculated
as [12]

q ¼ �kmrT þ ehpjp: ð15Þ

Substituting Eq. (15) into Eq. (14) yields

Table 1
The consistency factor g and power-law index n for different volume fraction / [21].

Nanoparticle volume fraction / (%) g (N secn/m2) n

0.0 0.00100 1.000
1.0 0.00230 0.830
2.0 0.00347 0.730
3.0 0.00535 0.625
4.0 0.00750 0.540
5.0 0.01020 0.460
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