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a b s t r a c t

Nonmonotone constitutive behavior leading to shear banding occurs in a number of fluids, such as worm-
like micelles and clay suspensions. In general, shear banded flows are not unique. Higher order terms in
the governing equations are often introduced to distinguish a preferred solution that arises as a steady
state in the long term. In the literature on wormlike micelles, stress diffusion has been widely considered
for this purpose.

In this paper, we discuss a different physical mechanism, based on interfacial energies and Korteweg
stresses associated with them. It is shown how this criterion leads to a form of ‘‘equal area’’ rule.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Complex fluids including wormlike micelles, suspensions and
colloids often show shear banding, i.e. the coexistence of high
and low shear rates at the same shear stress. Theoretical efforts
to model such fluids are often based on constitutive theories which
predict a nonmonotone dependence of shear stress on shear rate.
For such models, there exists a range of shear stresses for which
shear bands can occur. In planar Couette flow, the location of shear
bands is dependent on initial perturbations; in inhomogeneous
shear flows such as circular Couette flow or Poiseuille flow, the
shear band usually forms in the region of higher stresses. However,
the precise location and the stress level at which the jump from
low to high shear rate occurs is still nonunique and dependent
on initial conditions. This prediction needs to be reconciled with
the observation that steady flow behavior may instead show a
‘‘plateau,’’ i.e. a uniquely determined shear stress at which the
transition from low to high shear rates occurs.

A criterion which has been widely suggested as a path to resolv-
ing this issue is based on stress diffusion, see for instance
[7,12,16,19]. Say the constitutive law for the fluid postulates a
stress consisting of a Newtonian ‘‘solvent’’ contribution and a
viscoelastic stress T given by a differential constitutive law of the
form

s d
dt

T ¼ Gðrv;TÞ: ð1Þ

Here d=dt stands for the material time derivative and s is a relaxa-
tion time. Stress diffusion replaces this constitutive law by

s d
dt

T ¼ d2DTþ Gðrv;TÞ: ð2Þ

Here d is a small length scale. The result of adding these diffusion
terms is that the discontinuous shear banding transition is replaced
by a smooth transition (over a length scale of order d). ‘‘Admissible’’
steady flows are then those which arise in the limit d! 0. We note
that in numerical simulations of circular Couette flow in the litera-
ture the ‘‘plateau’’ is not entirely flat [14,20]; this is due to the finite
width of the transition which causes the stresses at both ends to dif-
fer slightly. The diffusion coefficient used in these simulations is lar-
ger than what would be considered realistic.

There are basically two assumptions underlying the idea of
stress diffusion:

1. Particles diffuse according to Fick’s law.
2. Stresses are determined as moments of a single particle distri-

bution function, so, as they diffuse, particles carry their stresses
with them.

These assumptions are quite reasonable for dumbbell models of
dilute solutions, where the polymer molecules are presumed to
interact only with a Newtonian solvent. I refer to [5] for a detailed
derivation of stress diffusion resulting from Brownian forces acting
on polymer molecules. However, such a picture is a stretch for the
fluids in which shear banding actually occurs. It seems clear that
diffusion laws ought to be more complicated than Fick’s law for a
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molecule that, for instance, is thought of as a kind of worm slither-
ing through a network of tubes. The assumption that stresses are
given in terms of a single particle distribution function also has
limitations.

In addition, the mathematical consequences of stress diffusion
are difficult to assess and may not always yield a desirable result.
As is well explained in [12], the admissibility criterion obtained
from stress diffusion amounts to finding a heteroclinic orbit in a
dynamical system, which is far from simple and can be done
explicitly only in limiting cases such as when the jump across
the shear band is small. However, this situation may not be of
much interest when in applications the jump in shear rate is typi-
cally several orders of magnitude. Moreover, we can identify situ-
ations where stress diffusion seems to be useless altogether.
Consider for instance an elastic solid. In an elastic solid, the stress
is a function of the deformation gradient F,

T ¼ HðFÞ; ð3Þ

if we differentiate this, we obtain something similar to (1) above,

dT
dt
¼ Gðrv; FÞ: ð4Þ

Note that in a static deformation both sides of (4) are zero. So if we
modify (4) by a stress diffusion term, we conclude that in a static
deformation the diffusion term should also be zero. Therefore, the
‘‘prediction’’ of this criterion would be that all stress components
should be continuous across the shear band. In general this cannot
be satisfied.

In this paper, we shall consider an alternative criterion, which
was originally proposed by van der Waals [18] and Korteweg
[10] for the liquid–gas transition. In this theory, higher order terms
do not appear in the constitutive law, but in the momentum equa-
tion. The theory is based on the postulate of an interfacial energy.
In the case of the liquid–gas transition, the density has a jump
across the interface, and smoothing of the interface is accom-
plished by introducing an interfacial energy which is assumed to
depend on the density gradient. The interfacial energy becomes
significant only when the density gradient is large. Usually, a qua-
dratic dependence on the density gradient is assumed. Korteweg
stresses are the forces which are associated with this interfacial
energy. They depend on first and second gradients of density.
The main achievement of the theory of van der Waals and
Korteweg was that it explains Maxwell’s equal area rule for the
liquid–gas transition. It also has been shown to give a microscopic
explanation of interfacial tension.

The idea of an interfacial energy has been extended to the the-
ory of mixtures [3] and to phase transitions in solid mechanics,
which are associated with changes in crystal structure. An exten-
sive literature has developed in this context, following the pioneer-
ing work of Ericksen [6]. In the context of elastic solids, interfacial
energies may depend on higher order gradients of the deformation
[2,3,13,17] or on an order parameter which replaces the concentra-
tion variable in mixture theories [8,9]. Such theories have also been
connected [8,9] to sharp interface theories such as developed in
[1]. Indeed, one of the main goals of developing regularized theo-
ries is to identify the selection of phase boundaries in equilibirum
or to predict the velocity with which phase boundaries move when
they are not in equilibrium.

We note that the authors in [16] try to motivate stress diffusion
by the presence of an interfacial energy, without, however, estab-
lishing any rigorous connection. In contrast, it is well understood
how Korteweg stresses are related to interfacial energies.

In this manuscript, we explore Korteweg stresses resulting from
a tube misalignment energy. That is, we identify a tube conforma-
tion tensor which describes the deformation of tubes in theories of

entangled liquids, and we postulate an energy which is quadratic
in the gradient of this conformation tensor.

For the sake of concreteness, we shall focus on parallel shear
flows, and on a particular model leading to nonmonotone constitu-
tive behavior, the PEC model of Larson [11]. We state the model in
the form in which it is given in [15]. The extra stress is given by a
Newtonian part and a ‘‘polymer’’ stress contribution:

S ¼ gðrv þ ðrvÞTÞ þ T; ð5Þ

and T is given in terms of a ‘‘conformation tensor’’ C as

T ¼ kC
trCþ a

: ð6Þ

Finally, the conformation tensor satisfies the equation

dC
dt
¼ ðrvÞCþ CðrvÞT � �ðtrCþ aÞðC� IÞ; ð7Þ

where I is the identity matrix.
Larson obtains this model from a tube theory in which polymer

molecules stretch only partially with their tubes. In this context,
the tensor C can naturally be interpreted as a tube conformation
tensor. The natural adaptation of the Korteweg–van der Waals the-
ory is the assumption of a ‘‘tube mismatch energy’’ with penalizes
rapid changes in tube conformation. We shall assume that the
energy density for this is of the form

W ¼ /ðC;rCÞ; ð8Þ

and that the dependence on rC is quadratic:

W ¼
X

i;j;k:l;m;n

aijklmnðCÞ
@Cij

@xk

@Clm

@xn
: ð9Þ

As we shall see such an energy leads naturally to a Korteweg stress
tensor which consists of a term linear in second derivatives of C and
a term quadratic in first derivatives.

A fully tensorial formulation would become quite complicated.
There are six independent components of the symmetric tensor C
and three space directions, so there are eighteen different compo-
nents of the gradient of C. This leads to 171 coefficient in (9), which
are related to each other by numerous symmetry constraints. The
Korteweg stress would, as in the one-dimensional case discussed
below, consists of a term linear in second derivatives of C and a
term quadratic in first derivatives.

We shall stick to the geometry of parallel shear flow. The flow is
in the x-direction and varies with y. In the following we denote
derivatives with respect to y by a prime and time derivatives by
a dot. In shear flow, the PEC model leads to C22 ¼ C33 ¼ 1;
C13 ¼ C23 ¼ 0, and we need to be concerned only with the C11

and C12 components. With j ¼ u0 denoting the shear rate, these
satisfy the equations

_C11 ¼ 2C12j� �ðC11 þ 2þ aÞðC11 � 1Þ;
_C12 ¼ j� �ðC11 þ 2þ aÞC12:

ð10Þ

We note that these equations are not changed by the Korteweg
stresses. The interfacial energy will have the form

W ¼ a1ðC11;C12ÞðC 011Þ
2 þ a2ðC11;C12ÞC 011C 012

þ a3ðC11;C12ÞðC 012Þ
2
: ð11Þ

Since this energy should not depend on the direction of shear, we
assume that a1 and a3 are even functions of C12, while a2 is odd. Cor-
responding to this energy density is a Korteweg stress of the form

s ¼ b1ðC11;C12ÞC 0011 þ b2ðC11;C12ÞC 0012 þ b3ðC11;C12ÞðC 011Þ
2

þ b4ðC11;C12ÞC 011C 012 þ b5ðC11;C12ÞðC012Þ
2
: ð12Þ
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