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a b s t r a c t

This paper is concerned with the convective instabilities associated with the boundary-layer flow due to a
rotating disk. Shear-thinning fluids that adhere to the power-law relationship are considered. The neutral
curves are computed using a sixth-order system of linear stability equations which include the effects of
streamline curvature, Coriolis force and the non-Newtonian viscosity model. Akin to previous Newtonian
studies it is found that the neutral curves have two critical values, these are associated with the type I
upper-branch (cross-flow) and type II lower-branch (streamline curvature) modes. Our results indicate
that an increase in shear-thinning has a stabilising effect on both the type I and II modes, in terms of
the critical Reynolds number and growth rate. Favourable agreement is obtained between existing
asymptotic predictions and the numerical results presented here.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The stability and transition of the boundary-layer flow due to a
rotating disk has attracted considerable interest in recent decades
and continues to be an area of flourishing research. The pioneering
study of Gregory et al. [1] contains the first observation of the sta-
tionary cross-flow vortices on a rotating disk. These instabilities
were explained theoretically using a high Reynolds number linear
stability analysis. Malik [2] presents the first comprehensive
numerical study concerning the convective stationary disturbances,
computing the curves of neutral stability using a sixth-order system
of linear disturbance equations. Utilising a parallel-flow approxi-
mation as well as including the effects of streamline curvature
and Coriolis force Malik demonstrates that there exists two distinct
neutral branches. An upper-branch due to the cross-flow instability,
termed type I and a lower-branch attributed to external streamline
curvature, termed type II. These numerical results were verified by
the linear asymptotic analysis of Hall [3]. He recovered the type I
solution presented by Gregory et al. [1] (later corrected by Gajjar
[4]) and showed that an additional short-wavelength mode exists,
its structure being fixed by a balance between viscous and Coriolis
forces. This mode corresponds directly to the type II branch.

Lingwood [5] investigated the role of absolute instability show-
ing that the boundary-layer on a rotating disk of infinite extent is
locally absolutely unstable at Reynolds numbers in excess of a crit-
ical value. The value of the critical Reynolds number agrees excep-
tionally well with experimental data, leading to Lingwood’s
hypothesis that absolute instability plays a part in turbulent tran-
sition on the rotating disk. Subsequently, Davies and Carpenter [6]
investigated the global behaviour of the absolute instability of the
rotating disk boundary-layer. By direct numerical simulations of
the linearised governing equations they were able to show that
the local absolute instability does not produce a linear global insta-
bility, instead suggesting that convective behaviour eventually
dominates at all the Reynolds numbers. Their conclusion was that
absolute instability was not involved in the transition process
through linear effects. More recently, Pier [7] demonstrated explic-
itly that a non-linear approach is required to explain the self-sus-
tained behaviour of the rotating disk flow. Using the result of
Huerre and Monkewitz [8] that the presence of local absolute
instability does not necessarily give rise to linear global instability;
Pier suggested that the flow has a primary non-linear global mode
(fixed by the onset of the local absolute instability) which has a
secondary absolute instability that triggers the transition to
turbulence.

Extending the rotating disk theory Lingwood [9], Lingwood and
Garrett [10] considered the BEK system of rotating boundary-layer
flows, named as such as it encompasses a family of rotating flows
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including the Bödewadt, Ekman and von Kármán boundary layers.
They show that as the Rossby number increases the flows become
increasingly unstable in both the convective and absolute senses.
Noting that the onset of convective and absolute instability occurs
almost simultaneously at very low Reynolds number in the Böde-
wadt boundary-layer. Numerous other studies have utilised and
modified the numerical scheme employed by Lingwood [5]. Garrett
and Peake [11] consider the stability and transition of the bound-
ary-layer on a rotating sphere whilst Garrett et al. [12] investigate
the cross-flow instability of the boundary-layer on a rotating cone.
One particularly interesting extension, with respect to the von
Kármán boundary-layer, is the temperature-dependent viscosity
study of Jasmine and Gajjar [13]. The authors introduce a viscosity
model based on an inverse linear function of temperature, con-
trolled by the small parameter �. They conclude that the stability
of the flow is particularly sensitive to changes in viscosity and even
for small positive values of � the flow is much more unstable com-
pared to the constant viscosity case defined by � ¼ 0.

In the current paper we examine the linear convective insta-
bility of the boundary-layer on a rotating disk for power-law flu-
ids. This work is essentially a development stemming from the
linear asymptotic study of Griffiths et al. [14] who hypothesised
that shear-thinning fluids may have a stabilising effect on the
flow. Following the approach of Malik [2] we compute curves of
neutral stability that can then be directly compared to the asymp-
totic predictions of Griffiths et al. [14]. A brief review of the
inconsistencies regarding steady mean flow solutions for this
problem is given by Griffiths et al. [14], and for the reasons out-
lined therein we restrict our attention to flows with moderate
levels of shear-thinning. The interested reader is referred to
Denier and Hewitt [15] for an in-depth analysis. In Section 2
the solution of the boundary-layer equations that give the steady
mean flow profiles is described and the unsteady perturbation
equations for the system are derived. The convective instability
analysis is conducted in Section 3, where our theoretical predic-
tions are compared with existing asymptotic results and linear
convective growth rates are discussed. Finally, our conclusions
are presented in Section 4.

2. Formulation

We consider the flow of a steady incompressible power-law
fluid due to an infinite rotating plane located at z� ¼ 0. The plane
rotates about the z�-axis with angular velocity X�. The motion of
the fluid is in the positive z� direction, the fluid is infinite in extent
and the only boundary is located at z� ¼ 0. In a rotating frame of
reference the continuity and Navier–Stokes equations are
expressed as

$ � u� ¼ 0; ð1aÞ

@u�

@t�
þ u� � $u� þX� � ðX� � r�Þ þ 2X� � u�

¼ � 1
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rp� þ 1

q�
$ � s�: ð1bÞ

Here u� ¼ ðeU�; eV �;fW �Þ are the velocity components in cylindrical
polar coordinates ðr�; h; z�Þ; t� is time, X� ¼ ð0;0;X�Þ and
r� ¼ ðr�;0; z�Þ. The fluid density is q� and p� is the fluid pressure.
For generalised Newtonian models, such as the power-law model,
the stress tensor is given by

s� ¼ l� _c� with l� ¼ l�ð _c�Þ;

where _c� ¼ $u� þ ð$u�ÞT is the rate of strain tensor and l�ð _c�Þ is the
non-Newtonian viscosity. The magnitude of the rate of strain
tensor is

_c� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_c� : _c�

2

r
:

The governing relationship for l�ð _c�Þ when considering a power-
law fluid is

l�ð _c�Þ ¼ m�ð _c�Þn�1
; ð2Þ

where m� is the consistency coefficient and n is the dimensionless
power-law index, with n > 1; n < 1 corresponding to shear-thicken-
ing and shear-thinning fluids, respectively. For n ¼ 1 we recover the
Newtonian viscosity model.

In the Newtonian limit an exact solution of (1) exists, as was
first determined by von Kármán [16]. However, no such solution
exists for flows with n–1. It is only in the large Reynolds number
limit that the leading order boundary-layer equations admit a sim-
ilarity solution analogous to the exact Newtonian solution. The
governing boundary-layer equations are
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with the viscosity function ~l� given by

~l� ¼ m�
@ eU�0
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 !2
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: ð3eÞ

Here ðeU�0; eV �0;fW �
0Þ are the leading order velocity components and eP�1

is the leading order fluid pressure term.
We introduce the generalisation of the classic Newtonian simi-

larity solution in order to solve for the steady mean flow relative to
the disk. The dimensionless similarity variables are defined by

UðgÞ ¼
eU�0

r�X�
; VðgÞ ¼

eV �0
r�X�

; WðgÞ ¼
fW �

0

v� ; PðgÞ ¼
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q�v�2 ; ð4Þ

where

v� ¼ m�

r�1�n X�
1�2n

� �1=ðnþ1Þ

:

Here ðU;V ;WÞ are the dimensionless radial, azimuthal and
axial base flow velocities, respectively, P is the pressure and
m� ¼ m�=q� is the kinematic viscosity. The dimensionless similarity
coordinate is

g ¼ r�
ð1�nÞ=ðnþ1Þ

z�

L�2=ðnþ1Þ where L� ¼
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