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a b s t r a c t

The Mori–Tanaka theory is well-known as one of the most accurate approximations of mechanical prop-
erties of composite materials in structural analysis. However, while the closed form expressions of its
predictions for elastic stiffness constants are available, so far it has lacked similar expressions for the
engineering constants typically required in applied engineering structural analysis. In this study, we pro-
vide a closed form expression of the Mori–Tanaka theory prediction for the engineering constants of a
unidirectional fiber-reinforced ply including the expression for the transverse modulus.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Many studies have investigated the prediction of the unidirec-
tional fiber-reinforced ply stiffness properties on the base of
empirical or statistical micromechanical models [1,2]. In particular,
predictions of engineering constants are of special importance due
to the demand of them in applied engineering structural analysis. A
comparison of different available formulae can be found in [3–7].

While the theories in general agree on the prediction of the
longitudinal modulus of the material, the transverse modulus
presents a difficult question. The most widely applied approaches
include the Chamis hypothesis [8] and the modified rule of
mixtures [9]. These two models are unique in the sense that they
provide closed form, compact expressions suitable for engineering
purposes. On the contrary, other theories including Halpin–Tsai
semiempirical expressions [10], the composite sphere and cylinder
assemblage models [11–14], the three-phase model [14], the
Mori–Tanaka theory [15,16], the self-consistent method [17–20],
and the differential scheme [21–28] are more accurate but either
not able to provide closed form expressions for all moduli, or these
expressions are lengthy and, therefore, have limited applicability.
In particular, for the Mori–Tanaka theory it is often said that
although the calculations are direct, the analytical results for the
transverse modulus are too lengthy to be published or employed
in applied structural analysis. Expressions for Mori–Tanaka predic-
tions are given in [29,30], but these formulae involve complex

matrix operations and knowledge of Eshelby tensor. The summary
of the available so far closed form expressions for the Mori–Tanaka
theory can be found in [31] but these expressions do not include
engineering constants.

The authors strongly believe in the usefulness of closed form
expressions for the engineering constants of a material. Although
in science the necessity for such expressions (when Hill’s constants
are available) may sometimes be limited, in industry such expres-
sions are often in great demand due to their simplicity and
convenience.

In this study, we overcome this drawback publishing the
engineering constants of the unidirectional fiber-reinforced ply in
closed form. The presented results are compact but exact (as much
as the Mori–Tanaka approximation is valid). For the detailed com-
parisons of the values of effective engineering constants obtained
by means of the Mori–Tanaka method with the results of other
theories, we refer the Reader to reviews [3–5,7], to Section 5 of
our paper, and to study [6] which presents the comparison of the
finite-element homogenization for a unit cell of unidirectional
composite with regular and random placement of fibers.

In Section 2, we discuss the properties of the composite con-
stituents used to illustrate the formulae applications. In Section 3,
we list the tensors used in homogenization as well as the expres-
sions leading to the effective engineering constants of the material.
In Section 4, we apply the Mori–Tanaka approximation to the uni-
directional fiber-reinforced ply and find the effective engineering
constants of the homogenized material. In Section 5, we present
numerical comparison of the results for different composite
constituents, considered earlier in Section 2.
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2. Materials considered

For illustrative purposes, we discuss the homogenization proce-
dure applied to several particular composites. Mechanical proper-
ties (engineering constants) of the considered fibers and matrix as
composite phases are given in Table 1, where Ef,1, Ef,2, mf,12, mf,23,
Gf,12, and Gf,23 are the engineering constants (Young’s moduli, Pois-
son’s ratios, and shear moduli) of the fiber in its coordinate system
(axis 1 is the fiber axis) and Em, mm, and Gm are the engineering con-
stants of the isotropic matrix.

Thereby, we consider the matrix and glass fibers as being isotro-
pic. We approximate the carbon and flax fibers as being trans-
versely isotropic.

3. Utilized tensors

Let us consider a fiber. In its coordinate system (xf,1, xf,2, xf,3), we
assume the stiffness properties of this fiber to be orthotropic with
the compliance tensor

Mf ;1111 ¼ 1
Ef ;1

; ð1Þ

Mf ;2222 ¼ Mf ;3333 ¼ 1
Ef ;2

; ð2Þ

Mf ;1122 ¼ Mf ;1133 ¼ � mf ;12
Ef ;1

; ð3Þ

Mf ;2233 ¼ � mf ;23
Ef ;2

; ð4Þ

Mf ;2323 ¼ 1
4Gf ;23

; ð5Þ

Mf ;3131 ¼ Mf ;1212 ¼ 1
4Gf ;12

: ð6Þ

All other elements of the compliance tensor, not listed above or
not obtained from the listed above by implied symmetry relations
Mf,ijkl =Mf,jikl =Mf,ijlk =Mf,klij, are zero.

The inverse of the compliance tensor constitutes the stiffness
tensor

Lf ;1111 ¼ Ef ;1ð1� mf ;23Þ
1� mf ;23 � 2 Ef ;2

Ef ;1
m2f ;12

; ð7Þ

Lf ;2222 ¼ Lf ;3333 ¼
Ef ;2 1� Ef ;2

Ef ;1
m2f ;12

� �
ð1þ mf ;23Þ 1� mf ;23 � 2 Ef ;2

Ef ;1
m2f ;12

n o ; ð8Þ

Lf ;1122 ¼ Lf ;1133 ¼ Ef ;2mf ;12
1� mf ;23 � 2 Ef ;2

Ef ;1
m2f ;12

; ð9Þ

Lf ;2233 ¼
Ef ;2 mf ;23 þ Ef ;2

Ef ;1
m2f ;12

� �
ð1þ mf ;23Þ 1� mf ;23 � 2 Ef ;2

Ef ;1
m2f ;12

n o ; ð10Þ

Lf ;2323 ¼ Gf ;23; ð11Þ

Lf ;3131 ¼ Lf ;1212 ¼ Gf ;12: ð12Þ
Again, all other elements of the tensor, not listed above or not

obtained from the listed above by the implied symmetry relations
Lf,ijkl = Lf,jikl = Lf,ijlk = Lf,klij, are zero.

Here we explicitly formulated that considered fibers are not
required to be transversely isotropic in the sense that

Gf ;23–
Ef ;2

2ð1þmf ;23Þ. Therefore, the results obtained later will correspond

to this general case of fiber structure and material.
For the isotropic matrix, the compliance and stiffness tensors

are much simpler:

Mm;1111 ¼ Mm;2222 ¼ Mm;3333 ¼ 1
Em

; ð13Þ

Mm;1122 ¼ Mm;1133 ¼ Mm;2233 ¼ � mm
Em

; ð14Þ

Mm;2323 ¼ Mm;3131 ¼ Mm;1212 ¼ 1þ mm
2Em

; ð15Þ

Lm;1111 ¼ Lm;2222 ¼ Lm;3333 ¼ Emð1� mmÞ
1� mm � 2m2m

; ð16Þ

Lm;1122 ¼ Lm;1133 ¼ Lm;2233 ¼ Emmm
1� mm � 2m2m

; ð17Þ

Lm;2323 ¼ Lm;3131 ¼ Lm;1212 ¼ Em

2ð1þ mmÞ : ð18Þ

If we homogenize the unidirectional fiber-reinforced ply, its
properties are described by the definitions similar to (1–12) in
the material coordinate system (x1, x2, x3); only instead of fiber
engineering constants Ef,1, Ef,2, mf,12, mf,23, Gf,12, and Gf,23, we should
substitute the effective engineering constants of the material:

Mply
1111

D E
¼ 1

Eeff
1

; ð19Þ

Mply
2222

D E
¼ Mply

3333

D E
¼ 1

Eeff
2

; ð20Þ

Mply
1122

D E
¼ Mply

1133

D E
¼ � meff12

Eeff
1

; ð21Þ

Mply
2233

D E
¼ � meff23

Eeff
2

; ð22Þ

Table 1
Engineering constants of the considered composite phases.

Material Young’s modulus E, GPa Poisson ratio Shear modulus G, GPa

HM Carbon P-100 fiber [32,33] Ef,1 = 775 Ef,2 = 6.8 mf,12 = 0.22 mf,23 = 0.28 Gf,12 = 20.6 Gf ;23 ¼ Ef ;2
2ð1þmf ;23Þ ¼ 2:7

HS Carbon T650 fiber [4,32,33] Ef,1 = 243 Ef,2 = 13.8 mf,12 = 0.29 mf,23 = 0.28 Gf,12 = 23.1 Gf ;23 ¼ Ef ;2
2ð1þmf ;23Þ ¼ 5:4

E-Glass fiber [34,35] Ef = 72 mf = 0.22 Gf ¼ Ef
2ð1þmf Þ ¼ 29:5

Flax fiber [36,37] Ef,1 = 60 Ef,2 = 10 mf,12 = 0.25 mf,23 = 0.25 Gf,12 = 3.2 Gf ;23 ¼ Ef ;2
2ð1þmf ;23Þ ¼ 4 .0

Epoxy PMR-15 [4,38] Em = 3.3 mm ¼ Em
2Gm

� 1 ¼ 0:375 Gm = 1.2
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