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a b s t r a c t

In this paper, we report an analytical approach for time-dependent stress variations in symmetrically vis-
coelastic composite laminates under plane deformation state based on a stress function based equivalent
single layer theory. The theory initially adopts the stress function separated by the in-plane stress function
and out-of-plane stress function as field assumption, instead of using the displacement field. The vis-
coelastic properties are simply expressed by the Maxwell model for the analysis of relaxation effect on
the free edge stresses in viscoelastic laminates. The constitutive equation in the integral form for linear
viscoelastic materials under constant uniaxial strain load can be simplified. By taking the principle of com-
plementary virtual work, the governing equation can be obtained and further solved by solving a general
eigenproblem. Convergent stress distributions are obtained and validated by the 3-D finite element
method using commercial package. The free edge stresses are function of time and loading conditions
in viscoelastic composite laminates and the relaxation effect on the free edge stresses is clearly shown
in the numerical results of viscoelastic composite laminates with various layup stacking sequences.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fiber-reinforced composites [1] have become important engi-
neering materials and been widely employed in engineering fields,
such as vehicles, aircrafts, sports equipments and so on. As it is
well known that one of the biggest disadvantages of fiber-
reinforced composite laminates is the mismatch of material prop-
erties between adjacent layers, this defect is critical to the service
life of composite laminates since the mismatch of material proper-
ties could result in severe stress concentrations and complex stress
state at layer interfaces even under a simple plane loading condi-
tion [2,3]. This defect has been comprehensively studied [4,5]
and well understood with a large quantity of numerical and analyt-
ical approaches developed for mathematical modeling. But, the
previously developed approaches only consider the ones that the
laminates have constant elastic properties which are normally for
perfect solids. However, when the laminates have viscoelastic
motion in a certain environment of high temperature and high
moisture, the viscoelastic behavior [6,7] cannot be neglected in
structural analysis and the time-dependent properties have to be

incorporated into the constitutive equations for viscoelastic
laminates.

There are many studies dedicated to the analysis of viscoelastic
behaviors, especially for vibration, bending and static stress analy-
ses. Kim [8] studied the nonlinear vibration of viscoelastic lami-
nated composite plates based on von Karman’s nonlinear
deformation theory and Boltzmann’s superposition principle. He
investigated the effect of large amplitude on the dissipative nature
and the natural frequency of viscoelastic laminated plates. Eshma-
tov [9] also studied the nonlinear vibrations of viscoelastic ortho-
tropic plates as well as the dynamic stability, but based on the
Kirchholff-Love hypothesis and Reissner–Mindlin generalized the-
ory. Reddy [10] recently reported a work of nonlinear viscoelastic
analysis of orthotropic beams using a general third-order theory
with the finite element implementation to study the quasi-static
behavior. Nguyen et al. [11] reported an efficient higher-order
zig-zag theory for viscoelastic laminated composite plates and
solved the problem by the Laplace transform instead of time inte-
gration. The effect of viscoelastic interfaces in laminated structures
has also been studied for three dimensional static and vibration
behavior [12], and cylindrical bending response of piezoelectric
laminates with viscoelastic interfaces [13]. Kim et al. [14] studied
the residual stresses in thick composite laminates induced during
the processing of curing based on a two-dimensional finite element
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model. They used a cure-dependent viscoelastic material model for
the analysis. Similarly, Ding et al. [15] studied the process-induced
residual stresses via a three dimensional thermo-viscoelastic
model. Besides the aforementioned works, Sung [16,17] studied
the interlaminar stresses in viscoelastic composites using the finite
element method under uniaxial extension, bending and twisting
loadings and [18,19] investigated the temperature and moisture
effects on viscoelastic responses later.

In the structural design of viscoelastic composite materials, the
time-dependent effect must be considered so as to ensure the envi-
ronmental durability over the entire service life of composite struc-
tures. Without taking into the consideration of viscoelastic effect, it
cannot predict strain, stress and displacement accurately for vis-
coelastic materials. In this paper, we report a simple and efficient
stress function based approach [20–22] to study the time-
dependent stress variations in viscoelastic laminates. To simplify
the problem, we adopt the Maxwell model to express the vis-
coelastic behavior and to study the relaxation effect on interlami-
nar and free edge stresses in viscoelastic laminates, where the
time-dependent relaxation stiffness is in the exponential form
and it is easy to implement mathematically. In addition, the pro-
posed methodology prefers using a stress function based theory,
where the Lekhnitskii stress functions [23] under the plane strain
state are employed and separated by in-plane and out-of-plane
stress functions. Although the stress function based approach fails
in reflecting the displacement information, it is computationally
much more efficient than the commonly used displacement based
approach in solving the local stress problem and it can satisfy the
pointwise equilibrium equations and the prescribed traction free
boundary conditions as well. By taking the principle of comple-
mentary virtual work, the coupled fourth-order differential equa-
tions are obtained. The solution procedure is firstly by
constructing a general eigenproblem. The eigenvalues and eigen-
vectors compose the general solutions of the fourth-order differen-
tial equations. Since we attempt to study the time-dependent
relaxation behavior, the constant strain load condition is consid-
ered and the results at different times are present. The verification
of the proposed method is discussed by comparing the results of
three-dimensional finite element analysis. Numerical examples of
various layup stacking sequences are also presented as demonstra-
tions to study the time-dependent stress variations. The results
will demonstrate the feasibility of using the stress function based
approach to study the time-dependent stress relaxations in vis-
coelastic composite laminates.

2. Formulations

A rectangular viscoelastic laminate with its geometry and coor-
dinate system is shown in Fig. 1, which consists of uniform thick-
ness orthotropic layers. Without considering the temperature and

moisture effect, the linear viscoelastic behavior can be described
by the following Boltzmann supposition integral equations for
creeping and relaxation, respectively.

frðtÞg ¼ ½Q0�feðtÞg �
R t
0þfeðsÞg½ _Qðt � sÞ�ds

feðtÞg ¼ ½J0�frðtÞg �
R t
0þfrðsÞg½_Jðt � sÞ�ds

ð1Þ

where t is the time, s is the time variable of integration, r(t) and e(t)
are the time-dependent stress and strain, respectively. The matrices
[Q(t)] and [J(t)] are the time-dependent stiffness and compliance
matrices, and [Q0] and [J0] are the initial stiffness and compliance
matrices.

In the present study, since we are going to investigate the relax-
ation of free edge stresses in viscoelastic laminates and to make the
problem easier, we choose the relaxation modulus of the Maxwell
model which is one of the simplest models for viscoelastic materi-
als and can be expressed by the following time-dependent form
without considering the effects of temperature and moisture.

½QðtÞ� ¼ ½Q0�e�aMt ð2Þ
where aM is the relaxation parameter normally determined by the
experimental relaxation curves.

The developed modeling is based on a constant uniaxial strain
load, so that the integration of the relaxation equation can be cal-
culated directly by substituting Eq. (2) into Eq. (1) and simplifying
the equation which becomes

frðtÞg ¼ ½Q0�feg � feg½Q0�
Z t

0þ
½aMe�aMðt�sÞ�ds ¼ ½Q0�fege�aMt ð3Þ

Note that Eq. (3) is the time-dependent relaxation equation for
a viscoelastic laminae based on the Maxwell model. For orthotropic
materials, the stiffness matrix has 9 independent components in
their material coordinates. While considering the general layup
stacking sequence of laminate, the generalized stiffness matrix
has the following relation in terms of the coordinate transform
matrix U.

½�Q � ¼ ½U��1½Q0�½U��T ð4Þ
Therefore, the time-dependent relaxation equation becomes

frg ¼ ½�Q �fege�aMt ð5Þ
The strain vector can be calculated by left multiplying the gen-

eralized compliance matrix �S as follows.

feg ¼ ½�S�frgeaMt ð6Þ
In the above equation, the stress component r1 can be calcu-

lated and expressed in terms of e1, material coefficients and other
five stress components.

r1 ¼ ðe1e�aMt � �S1jrjÞ=�S11; ðj ¼ 2;3; . . . ;6Þ ð7Þ
By substituting Eq. (7) into Eq. (6), all strains can be obtained

except e1.

ei ¼ ð�Sij � �Si1�S1j=�S11Þrj þ �Si1=�S11e1e�aMt ; ði; j ¼ 2;3; . . . ;6Þ ð8Þ
In the present work, the governing equations can be obtained

by taking the following principle of complementary virtual work
considering the plane strain state.

@U ¼
Z Z

eidridydz ¼ 0; ði ¼ 2;3; . . . ;6Þ ð9Þ

Substituting Eq. (8) into Eq. (9), it results in the following
equation.

@U ¼
Z Z

½djð�Sij � �Si1�S1j=�S11Þdri þ ð�Si1=�S11e1e�amtÞdri�dndg

¼ 0 ði; j ¼ 2;3; :::;6Þ ð10Þ
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Fig. 1. Coordinate system and geometry of viscoelastic laminate.
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