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a b s t r a c t

In axially loaded corrugated laminates consisting of more than one layer interlaminar stresses occur due
to the curvature which potentially cause delamination of the laminate. Therefore, it is crucial to know
how geometry and lay-up influence the interlaminar stress and hence the risk of delamination. In this
paper, a parameter study is presented that studies the influence of corrugation amplitude and different
lay-ups on interlaminar stresses. We considered two geometries, one consists of circular sections and the
other is a sinusoidal shape. From the parameter study we can derive favorable configurations to minimize
normalized interlaminar stresses. A numerical model is used to calculate the stress distribution in the
cross-section of the corrugation. It considers a generalized plane strain state and uses a unit-cell
approach. The model is validated with experiments in a tensile test using digital image correlation (DIC).

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The geometry effects of singly-curved corrugated sheets create
extreme anisotropy. As other authors [1,2] have suggested, corru-
gated sheets are ideal candidates for the design of flexible skins
as a structural element in morphing-wing design, where high
stretch ability along the chord direction must be combined with
high contributions to structural stiffness and strength along the
span direction of an airplane wing [3]. Other authors [4,5] investi-
gated the potential of morphing wing concepts to achieve higher
control and flight performance at lower weight than conventional
solutions. To achieve higher mass-specific stiffness and strength
and higher limit strain, the base sheet should be a laminate made
from carbon-fiber reinforced plastic (CFRP). A recent review article
[6] summarizes the state-of-the-art of the research investigating
corrugated sheet concepts emphasizing the relevance of these
structures.

Flexible skins must not impair the aerodynamic properties of
the morphing wings. It has been found that the aerodynamic
behavior improves with decreasing corrugation amplitudes and
periodic cell lengths [5,7]. Smaller periodic lengths lead to higher
laminate thickness-to-curvature ratios, which increase the local
interlaminar stresses caused by the corrugation geometry. The
interlaminar stresses can cause layer debonding at relatively low
external loads [8]. The present work investigates the influence of
corrugation parameters on the ratio of out-of-plane to in-plane

stress components in order to identify, in Section 4.3, design limits
with respect to interlaminar strength. We focus on periodic corru-
gated structures, however, the considerations are in general also
applicable for curved laminates.

The analysis of corrugated structures made from anisotropic
material can lead to enormous computational costs. Conventional
finite element methods are not efficient if the structure contains
many periods of the corrugations and consists of many layers. Day-
yani et al. presented a detailed nonlinear finite element study of
corrugated structures [9], but this would be too time consuming
for our purposes since we aim to perform parameter studies.
Therefore, fast models are needed to calculate the mechanical
response. Several analytical models exist to analyze the initial stiff-
ness corrugated structures. Xia et al. suggested a homogenization
model to calculate the stiffness matrix for thin balanced laminates,
thus ignoring the coupling stiffness matrix B [10,11]. Winkler et al.
[12] proposed an equivalent model for circular sections. Moham-
madi et al. suggested an analytical model for trapezoidal shapes
based on a homogenization approach [13]. These models are only
valid for thin laminates and therefore are note appropriate for
the present study where we investigate relatively thick laminates.
Hence, a numerical approach is more suitable for the present work.
Peng et al. [14] introduced a mesh-free Galerkin model to calculate
the elastic stiffness behavior of trapezoidal and sinusoidal shaped
corrugations. The model was extended by Liew et al. [15] to
simulate the nonlinear response of corrugated laminates.

Various models exist to calculate the stress distribution in
curved structures. An analytical model to predict the stress in
curved laminates was suggested by Roos et al. and Kress et al.
respectively [16,17]. Fraternali et al. proposed a one-dimensional

http://dx.doi.org/10.1016/j.compstruct.2015.11.038
0263-8223/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: thclaudi@ethz.ch (C. Thurnherr).

Composite Structures 140 (2016) 296–308

Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2015.11.038&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2015.11.038
mailto:thclaudi@ethz.ch
http://dx.doi.org/10.1016/j.compstruct.2015.11.038
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct


finite element model to calculate interlaminar stresses in curved
beams that are loaded in three-point bending [18]. Shenoi et al.
presented an analytical model based on elasticity-theory to predict
through-thickness stresses in curved laminates and sandwich pan-
els [19]. Gonzalez-Cantero et al. introduced a semi-analytic
method to predict interlaminar stresses in curved beams with con-
stant curvature [20]. All these models are not specifically devel-
oped to analyze periodic corrugated structures, are not suitable
for arbitrary shapes, do only consider certain load cases or are
restricted to single components of the interlaminar stress.

Recently, Kress et al. suggested a numerically efficient model
using a unit-cell approach and a generalized plane strain state to
model corrugations of any shape, thickness and with arbitrary
lay-ups [21–23]. The model is suitable for all load cases describing
the full mechanical response of the structure. This model is applied
and extended in this paper in order to analyze the spatial stress
distribution in corrugated laminate cross-sections.

The objectives of this paper are to investigate the influence of
geometry and laminate lay-up onto interlaminar stresses. We fur-
ther ask the question whether we can identify favorable geome-
tries in order to minimize the interlaminar stresses. We compare
a sinusoidal shaped corrugation to a corrugation consisting of cir-
cular sections. We consider four different lay-ups consisting of
pure twill or UD layers and combinations of them. A parameter
study is presented where we investigate the influence of the corru-
gation amplitude and the lay-up on the mechanical behavior,
namely the interlaminar stresses and the axial stiffness, for the dif-
ferent geometries. Further, we present in this paper an experimen-
tal validation of the used numerical model where we measured
displacements and strains.

The following section of the paper introduces the numerical
model, geometry definition and load cases. Then the experiments
are described and the experimental results are presented and dis-
cussed. The next section describes the parameter study and shows
and discusses the numerical results of the simulations, including
the stress distribution for certain examples and the results of the
parameter study. The paper closes with a conclusion of the present
work.

2. Numerical model

We used a numerical model that is able to calculate the
mechanical response of corrugated laminates with arbitrary thick-
ness and lay-up. Our model is based on the FEM model that was
suggested by Kress and Winkler [21–23]. The model uses a unit-
cell approach and a generalized plane strain state to reduce the
computational costs. The generalized plane strain state assumes
that the stresses and strains do not change with respect to the
out-of-plane x direction. It is derived from a simplified mechanical
equilibrium:

syx;y þ szx;z ¼ 0
ry;y þ szy;z ¼ 0
syz;y þ rz;z ¼ 0

ð1Þ

Uniform strains �̂0x , uniform bending about y �̂1x and twist �̂1xy are
used to force deformations. They are compatible with the
generalized-plane-strain assumption and they lead to a displace-
ment field of the form:

ux ¼ uxðy; zÞ þ x �̂0x þ z�̂1x
� �þ 1

2
yz�̂1xy

uy ¼ uyðy; zÞ þ 1
2
zx�̂1xy

uz ¼ uzðy; zÞ � 1
2
x2�̂1x �

1
2
xy�̂1xy

ð2Þ

This displacement solution consists of an inner FE solution
uiðy; zÞ and the prescribed strains �̂0;1i . The inner FE solution is not
a function of the transverse direction x. Hence, it is sufficient to cal-
culate the FE solution at one cross-section position only. This
reduces the computational costs.

The strains are calculated from the displacement solution using
the linearized kinematic relations,

� ¼ Luþ �̂ ð3Þ
where the linear differential operator L

LT ¼
0 0 0 @

@y 0 0

0 @
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0 0 @
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@z
@
@y

2
664

3
775 ð4Þ

is adapted to the plane-strain assumption as it contains no deriva-
tives with respect to x and �̂ contains the prescribed macro strains:

�̂T ¼ ½�̂0x þ ĵxz 0 0 0 0 ĵxyz�: ð5Þ
The stresses are calculated from the strains using the general-

ized Hook’s law:

rxyz ¼ C� ð6Þ
where rxyz and � denote the stress and strain vector, respectively. C
represent the material law for orthotropic materials in global
coordinates.

The above expressions for strains and stresses are used to for-
mulate the weak variational formZ
X
duTLTCðLuþ �̂ÞdX�

Z
C
duTUr̂dC ¼ 0 ð7Þ

which is transformed by the finite-element method to a numerical
system of equations where the unknown mesh-node displacements
~u respond to the forces contained in the right-hand-side r and the
structural properties are mapped with the stiffness matrix K:

K~u ¼ r: ð8Þ
The standard notation of the stiffness matrix K is

K ¼
XNel

k¼1

Z
Xel

BTCBdX ð9Þ

where Nel is the number of finite elements in the mesh, Xel is ele-
ment domain, B relates node displacements to element strain
distributions,

� ¼ B~u ¼ LU~u ð10Þ
where U are the element displacement approximation functions.
The right-hand side reflects natural boundary conditions and the
macro strains to be described for the generalized plane-strain
condition,

r ¼
XNel

k¼1

Z
C
UT r̂dC�

XNel

k¼1

Z
Xel

BTC�̂dX ð11Þ

where r̂ contains the tractions specified on the boundary C.
The form allows for a planar mesh where each node carries

three displacement degrees-of-freedom. By using a unit-cell, we
assume that the corrugation pattern is periodic and we apply peri-
odic boundary conditions on both ends.

To evaluate the stresses and strains at an optimal location in the
finite element, the Barlow points are well known and used as a
standard procedure [24]. In our case the Barlow point coincide
with the three times three Gauss points. Using the constitutive
law, we can calculate the stresses from the strains. We define the
stresses in the corrugated laminate according to Fig. 1 where
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