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a b s t r a c t

In this paper, the Certain Generalized Stresses Method (CGSM) is developed for static probabilistic anal-
ysis of multilayered composite plates modeled by finite elements. The material and the physical proper-
ties are considered as random parameters. The variability of a displacement can be evaluated by a Monte
Carlo Simulation (MCS) using an explicit expression. For calculating the variability of a displacement, only
one nominal finite element analysis with two load cases is required. The variability of strains, stresses
and failure criteria can also be evaluated by using the CGSM. Two examples, a two-layer bending plate
and an eight-layer bending plate, are studied. The results are compared with those obtained by the direct
MCS, considered as a reference, and those presented in the literature. The comparison shows that the
CGSM + MCS approach provides quite accurate results and highlights the high computational efficiency
of the proposed method.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Because of their good mechanical strength and low density,
composite laminated structures are widely used in various indus-
trial sectors like construction, aerospace, transport and so on. But
their manufacturing process induces a higher variability of proper-
ties than that of conventional homogeneous and isotropic
structures.

So far, many studies have been investigated to take into account
the uncertainties of the material or physical properties of compos-
ite structures in numerical models. Several methods have been
developed to study the homogenization and estimation of proper-
ties of composites. Sakata et al. use a perturbation method [1] and
a Kriging method [2] to study the homogenization of the elastic
properties. Dwaikat et al. [3] study the effect of the stochastic nat-
ure of the constituent parameters on the elastic properties of
fibrous nano-composites with the direct Monte Carlo Simulation
(MCS), which runs a great number of simulations with random tri-
als. Kamiński and Leśniak [4] study the homogenization of metallic
fiber-reinforced composites using the perturbation method.

For membrane composite structures, there are fewer studies.
Van Vinckenroy and de Wilde [5] use the direct MCS to evaluate

the variability of the stresses of a perforated plate. The variability
of the strains of a rectangular panel is investigated by Ngah and
Young [6] using a spectral method. The influence of uncertain Pois-
son’s ratio on the out-of-plane behavior of composite plates is
studied by Noh and Seo [7] using a weighted integral method.

Bending composite structures have drawn more attention. Park
et al. [8] study the variability of displacements and stresses with a
perturbation method. A spectral method is employed by Chen and
Soares [9] to evaluate the variability of the displacements of a plate
under a concentrated load. António and Hoffbauer [10] use a per-
turbation method for the probabilistic analysis of the displace-
ments and the failure criteria of a composite shell. A weighted
integral method is used to study the influence of Poisson’s ratio
by Noh and Park [11] as well as that of elastic and shear moduli
by Noh [12].

There are also many studies about the reliability of composite
structures. Jeong and Shenoi [13], Lin [14], Frangopol and Recek
[15], employ the direct MCS to predict the reliability of composite
structures with uncertain parameters. The perturbation method is
respectively used by Salim et al. [16], Onkar et al. [17,18], and Lal
et al. [19] for the probabilistic failure analysis of laminated com-
posite plates.

However, these existing methods, such as the direct MCS, are
either very costly in computation time or not accurate for a high-
level variability. So developing an economical and reliable method
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accounting for the variability in the finite element calculations is a
very interesting challenge. The Certain Generalized Stresses
Method (CGSM) is firstly proposed by Lardeur et al. [20–23] for
the probabilistic analysis of isotropic bars and beams. Mahjudin
et al. [24] develop this method for homogenous and isotropic
plates. This method can efficiently provide accurate results, even
if the level of variability and the number of variables are large.
Moreover, it is non-intrusive and able to take into account the vari-
ability of not only material properties (elastic moduli. . .) but also
physical properties (plate thickness. . .).

In this article, the CGSM is developed for multilayered compos-
ite plates with uncertain material and physical properties. These
uncertain parameters are represented by random fields which
are discretized by the Karhunen–Loève expansion and two
approaches: the midpoint method and the local average method.
The CGSM is based on the assumption that the generalized stresses
are independent of uncertain parameters. Thanks to this assump-
tion, the internal strain energy can be expressed for any combina-
tion of uncertain parameters. Using Castigliano’s theorem, an
explicit expression of displacement can be obtained. Then a MCS
is performed on this expression, which allows to calculate the sta-
tistical quantities (mean value, standard variation, distribution. . .)
of a displacement. This method can also be employed to evaluate
the variability of strains, stresses and failure criteria.

In the next section, the Karhunen–Loève expansion and two
approaches, the midpoint method and the local average method,
are presented. Section 3 gives a short description of the mechanical
behavior of multilayered composite structures. In Section 4, the
CGSM formulations for composite plates are presented. In Section 5,
two numerical examples are studied with various correlation
lengths and input variability levels. For verifying the numerical
accuracy and the computational efficiency of the CGSM, the results
are compared with those obtained by the direct MCS and those
presented in the literature. Conclusions are given in the last
section.

2. Random field

For a parametric approach, the uncertain parameters are repre-
sented by random variables or random fields. The variability of a
composite structure modeled by finite elements is studied by using
random fields in this paper. In order to obtain a random field, first
of all, a covariance matrix ½Cov � should be calculated. Two methods
are used here to construct ½Cov �: the midpoint method and the
local average method.

2.1. Midpoint method

The midpoint method is the most widely used method because
of its simplicity. In this method, the random fields are calculated at
the center of each element. The covariance matrix is defined by:

½Cov �ij ¼ r2 exp � jDxijj
kx

� jDyijj
ky

� �
ð1Þ

where r is the standard deviation of the uncertain parameter, Dxij
and Dyij are respectively the distances between the midpoints of
the elements i and j in the x and y direction, kx and ky are respec-
tively the correlation lengths in the x and y direction.

2.2. Local average method

The limit of the midpoint method is that the variability of the
response cannot be well estimated when the correlation length is
small or the mesh is coarse. In this case, the local average method
is employed. It was proposed by Vanmarcke and Grigoriu [25] and

developed by Zhu et al. [26,27]. In this method, the random fields
are obtained by an integration over the elements, rather than the
distance between the element centers. The covariance matrix
between two elements is thus described:

½Cov�ij ¼
r2

AiAj

Z
Ai

Z
Aj

exp � jDxijj
kx

� jDyijj
ky

� �
dAidAj ð2Þ

where Ai and Aj are the areas of elements i and j, Dxij and Dyij are
respectively the distances between two arbitrary points of the
elements i and j in the x and y direction.

According to Ghanem and Spanos [28], the random field can be
discretized by the Karhunen–Loève expansion. hEðx; hÞi denotes a
random field whose mean value is lðxÞ. It can be represented by:

hEðx; hÞi ¼ lðxÞ þ
Xm
i¼1

ffiffiffiffi
ki

p
f iðxÞhnðhÞi ð3Þ

where m is the number of terms retained, ki and f iðxÞ are respec-
tively the eigenvalues and eigenvectors of the covariance matrix
½Cov �. hnðhÞi is a vector of random variables which is defined by a
truncated Gaussian distribution law. The Eq. (3) can be written as:

hEðx; hÞi ¼ lðxÞ þ ½L�hnðhÞi ð4Þ
with

½L� ¼ ½Cov �1=2 ð5Þ
In order to get ½L�, two methods can be used to decompose the

covariance matrix ½Cov �: the Cholesky decomposition or the singu-
lar value decomposition. These two methods generally lead to
close results.

3. Mechanical behavior of multilayered composite structures

3.1. Constitutive law

For multilayered composite structures, the mechanical behavior
is governed by Hooke’s law. Taking into account the assumption
r3 ¼ 0 used in classical plate theories exploited in this study, the
constitutive relations of each layer in the material coordinate sys-
tem can be written as:

frg ¼ ½Q �feg ð6Þ

fsg ¼ ½QS�fcg ð7Þ
where frg, feg, fsg and fcg are respectively plane stress vector,
plane strain vector, shear stress vector and shear strain vector.
The stiffness matrices ½Q � and ½QS� are defined by:

½Q � ¼
E1

1�#12#21

#21E2
1�#12#21

0
#21E2

1�#12#21

E2
1�#12#21

0

0 0 G12

2
664

3
775 ð8Þ

½QS� ¼
G13 0
0 G23

� �
ð9Þ

where E1 is the longitudinal elastic modulus, E2 is the transversal
elastic modulus, #12 and #21 are Poisson’s ratios, G12 is the in-
plane shear modulus, G13 and G23 are the out-of-plane shear moduli.

The direction of fibers in each layer of laminated composite
structures may be different, which means a stacking angle h
between material axes and global axes (Fig. 1). Referred to global
coordinate system, the constitutive relations can be transformed
into:

Q 0� � ¼ ½T1�T ½Q �½T1� ð10Þ
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