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a b s t r a c t

Linear stability analysis of Taylor–Couette flow of dilute polymeric solutions has been performed by using
two prototypical constitutive equations for polymeric solutions, namely, the Oldroyd-B and the FENE-P
models. The hydrodynamic stability characteristics of the flow in the presence and absence of thermal
effects and in the limit of vanishing fluid inertia have been determined using an eigenvalue analysis.
Particular attention has been paid to accurately determine the instability onset conditions as a function
of fluid thermal sensitivity and gap ratio. We observed a reduction in the critical Weissenberg, Wic, for the
instability onset as the gap ratio and fluid thermal sensitivity are enhanced. In particular, under non-
isothermal conditions, Wic was reduced by almost an order of magnitude for all gap ratios. Our results
suggest that recent experiments leading to observations of ‘‘purely elastic turbulence’’ in the Taylor–
Couette flow at order (1) Wi by Groisman and Steinberg (2004) [1] were not performed under isothermal
conditions. Hence, this new flow state should be labeled ‘‘thermo-elastic turbulence.’’

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Investigating the influence of elasticity on the hydrodynamic
stability of prototypical flows has been a topic of much research
in the past few decades [1–7]. In particular, curvilinear shear flows
such as Taylor–Couette, Dean, cone-and-plate and plate-plate
flows have received a great deal of attention as they are prone to
purely elastic instabilities. In the absence of fluid inertia, purely
elastic instabilities manifest as the Weissenberg number, Wi,
which is defined as the ratio of elastic to viscous forces, becomes
O(1). Although spatio-temporal characteristics of instability and
non-linear flow pattern transitions depend on flow geometry,
purely elastic instabilities in curvilinear shear flows are attributed
to significant polymer normal stress along the curved streamlines
leading to ‘‘hoop’’ stresses. In turn, hoop stresses squeeze fluid ele-
ments radially inward, and elastic instability can be triggered
[3,4,7].

The motion of a fluid confined between two infinitely long and
concentric rotating cylinders is termed the Taylor–Couette flow for

pioneering studies by Taylor [8]. These studies demonstrated a
transition from a purely azimuthal flow to a secondary flow state
above a critical Reynolds number, defined as the ratio of inertial
to viscous forces. Almost seven decades later, Muller and cowork-
ers observed a new mode of instability in the Taylor–Couette flow
of dilute polymeric solutions at vanishing Reynolds number, Re,
dubbed purely elastic instability [2]. In this pioneering study, the
adverse gradient of elastic hoop stress across the curved stream-
lines was identified as the driving mechanism for the flow
transition.

The aforementioned discovery was followed by several studies
devoted to hi-fidelity prediction of the instability threshold condi-
tion [3,4,7,9]. Nonetheless, theoretical predictions and experimen-
tal observation [10–13] as well as experimental observations alone
[3,10,11] have revealed qualitative and quantitative disparities.
Specifically, time-dependent and asymmetric mode of instability
predicted via isothermal linear and weakly non-linear stability
analyses was observed to occur at critical Wi with an order of mag-
nitude greater than experimentally measured values [3,12,13].
Moreover, it was indicated that secondary flow transition occurs
via a subcritical bifurcation, i.e., there is a hysteresis in the flow
pattern dynamic that cannot be predicted via linear stability anal-
ysis [13]. However, the predicted hysteresis loop could not
adequately describe the discrepancies between linear stability
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results and experimental observations. A decade later, it was dem-
onstrated that the coupling of viscous dissipation with thermal
sensitivity of high viscous dilute polymeric solution gives rise to
convection of the base-state temperature gradient by the radial
perturbation velocity leading to a critical Wi an order of magnitude
lower than that of the corresponding isothermal flow [14,15]. In
fact, non-isothermal linear stability analysis predicted a symmetric
and time-invariant instability mode, consistent with the instability
flow patterns observed in experimental studies [10,11]. Further-
more, the non-linear stability analysis that Al-Mubaiyedh et al.
implemented showed that the bifurcation corresponding to such
thermo-elastic instability is supercritical, i.e., in a flow with the
vanishing Reynolds number, the bifurcation leads to the axisym-
metric and time-independent mode of instability [15].

While much effort was focused on resolving this aforemen-
tioned discrepancy, several experimental studies were performed
on higher order non-linear flow transitions in the Taylor–Couette
flow. Specifically, Groisman and Steinberg observed three dominant
flow patterns in dilute PAAm aqueous solutions at high Wi and O(1)
elasticity number, E = Wi/Re, namely, diwhirls (DW), oscillatory
strips (OS), and disordered states (DO) [16–18]. Subsequently, these
flow patterns were reproduced via hi-fidelity direct numerical sim-
ulations (DNS), i.e., Wi and E corresponding to the transition from
one flow state to another were faithfully reproduced [19,20]. In
recent studies, elastically induced turbulent flow states have been
also investigated via high fidelity DNS with the aim paving the
way for understanding of this new class of flows [21,22].

Steinberg and Groisman were the first to observe a Taylor–
Couette flow state at O(1) Wi exhibiting broad range of spatial
and temporal scales, named, ‘‘elastic turbulence’’ [1]. However,
the influence of energetics on this novel flow state was not dis-
cussed, despite the fact that in their experiments, a dilute solution

composed of a high molecular weight PAA 18;000; 000 gr
grmol
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a highly viscous solvent of sugar, NaCl and water was utilized. Such
high viscosity dilute polymeric solutions, commonly referred to as
Boger fluids are prone to viscous dissipation when subjected to
flow. Therefore, the fact that the ‘‘elastic turbulence’’ state, a higher
order non-linear state, occurs at Wi = 5 and the lack of information
on thermal effects in the experiments necessitates a more careful
examination of instability onset conditions as a function of gap
ratio and thermal sensitivity of the fluid.

This study examines the onset conditions for purely elastic and
thermo-elastic instabilities in the Taylor–Couette flow over a wide
gap ratio and fluid thermal sensitivity. This is accomplished via
performing linear stability analysis with set of continuum conser-
vation and constitutive equations. Specifically, the Oldroyd-B and
the FENE-P constitutive models have been used to describe the
rheological characteristics of dilute polymeric solutions. Our com-
prehensive analysis has clearly shown that although Wi for the
onset of instability is reduced as the gap ratio is enhanced, without
consideration of thermal effects, a O(1) Wi instability condition
cannot be realized. These findings cast doubt as to the existence
of purely elastic turbulence in Taylor–Couette flows at O(1) Wi as
reported by Groisman and Steinberg [1].

2. Problem formulation

2.1. Governing equations

Fluid motion between two infinitely long and concentric cylin-
ders of radii, R1 and R2(R1 < R2), is considered. The inner cylinder
rotates with angular velocity of X1, and the outer cylinder is sta-
tionary. The total solution viscosity, density, and the polymer solu-
tion’s average relaxation time are noted as gT, q and k, respectively.
The total solution viscosity is the sum of the solvent viscosity and

polymeric contributions, i.e., gT = gS + gP; where gS and gP refer to
the solvent viscosity and polymeric viscosity, respectively.

In order to non-dimensionalize the governing equations, the
gap width, d = R2 � R1, d/R1X1, R1X1, q(R1X1)2 and gPR1X1/d are
chosen as the non-dimensionalizing scales for length, time, veloc-
ity, pressure, and polymeric stress, respectively. Additionally, the
temperature is scaled with a reference temperature of T0. In the
flow system, the temperature difference is considered to be within
the order of O(1 �C) across the gap width, which is attributed to
heat generation induced by viscous dissipation. Considering these
conditions, the fluid is practically incompressible, leading to the
following equation of continuity:

r:v ¼ 0 ð1Þ

The non-dimensionalized equation of motion is expressed as

@v
@t
þv :rv

� �
¼�rPþ 1

Re
r:fb e�s

1
T�1ð ÞðrvþðrvÞTÞþð1�bÞ 1

Wi
sp ð2Þ

In Eq. (2), P and v represent hydrodynamic pressure and flow
velocity, respectively; sp is the polymeric contribution to the stress.
b is the ratio of solvent to total viscosity at the reference tempera-
ture, b = gs/gT; �s is dimensionless activation energy defined as

�s ¼
DHs

RT�0
ð3Þ

In this equation, DHs and R are activation energy attributed to the
solvent and the universal gas constant, respectively. In Eq. (2),
rv + (rv)T is defined as j =rv + (rv)T, the rate of deformation ten-
sor. In the same equation, the dimensionless Reynolds number
appears as Re, which is defined as

Re ¼ qR1X1d
gT

ð4Þ

In the Oldroyd-B model, polymer molecules are modeled as
non-interacting elastic dumbbells with a linear (Hookean) spring
connector. The polymeric stress is formulated as the departure of
the conformation tensor, C, representing the ensemble average of
the second moment of the polymer chain’s end-to-end vector
from its equilibrium conformation denoted as isotropic unit
tensor I,

sp ¼
C � I
Wi

ð5Þ

in which C is non-dimensionalized with respect to a characteristic
dumbbell length defined in terms of kT/H. Here k, T, and H corre-
spond to the Boltzmann constant, temperature and Hookean spring
constant, respectively.

Using the principle of time-temperature superposition and the
concept of pseudo time [23], the isothermal Oldroyd-B constitutive
equation for polymeric stress can be modified in a thermodynam-
ically consistent fashion for the influence of thermal history on the
stress and is given by

sp þWi:e�k
1
T�1ð Þ spð1Þ �

@

@t
ðln TÞ þ v :r ln T

� �
s

� �

¼ 2e�p
1
T�1ð Þ rv þ ðrvÞT

� �
ð6Þ

where sp(1) is the upper convected derivative defined as

spð1Þ ¼
@sp

@t
þ v :rsp � ðrvÞTsp � sp:rv ð7Þ

ekand ep are the dimensionless activation energies for the relaxation
time and polymer viscosity, respectively noted as

�p ¼
DHp

RT�0
and �k ¼

DHk

RT�0
ð8Þ
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