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a b s t r a c t

Unstiffened cylindrical shells are very sensitive to geometric imperfections such as production-related
deviations from the ideal geometry (conventional imperfections) as well as imperfect boundary condi-
tions, material and wall thickness imperfections (non-conventional imperfections). The load carrying
capability of unstiffened shells is reduced significantly by those imperfections. The NASA SP-8007 design
guideline from 1968 is currently used for shell design. This guideline provides knock-down factors for the
buckling loads and is based on experimental data of isotropic and orthotropic test specimen. Therefore
the structural behavior of composite material is not considered adequately.
Based on the single-perturbation load approach (SPLA), this paper introduces a new physical based

approach, to determine a lower bound for the buckling load of unstiffened composite cylindrical shells
with respect to conventional and non-conventional imperfections, the constant single-buckle imperfec-
tion (CSBI) principle. The CSBI principle is based on the theory of the metastability of the geometric
imperfect cylindrical shell which is introduced within this paper. The results indicate that the CSBI prin-
ciple has the potential to provide an improved shell design in order to reduce weight and cost of thin-
walled shells.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

First buckling experiments of thin, cylindrical shells were per-
formed by Lundquist [1] in 1933 and Donell [2] in 1934. A signifi-
cant number of buckling experiments were performed in the 1950s
and 1960s. Weingarten, Morgan and Seide [3] summarized a series
of experimental data, which can be seen in Fig. 1.

The experimental data is illustrated by means of a knock-down
factor (KDF) q (ratio of experimental to theoretical buckling load)
versus the slenderness of the shells (ratio of Radius R to wall thick-
ness t). It can be seen that the theoretical determined buckling
loads overestimate the experimental buckling loads in part by fac-
tor three to four. The difference between predicted linear buckling
load and experimental buckling load provoked scientist to further
investigate this problem in the last decades.

Koiter [5] showed in his dissertation from 1945 that geometric
imperfections are responsible for the deviations between theoret-
ical and experimental buckling load. Therefore subsequent

investigations focused on geometric imperfections. Other different
imperfection types like boundary condition imperfections (BCI),
wall thickness and material imperfections (defined as stiffness
imperfections – SI) have been gradually studied.

Geometric imperfections are defined as deviation from the ideal
geometry of a cylinder and are further referenced as geometric
mid-surface imperfections (MSI) after [6]. Geometric imperfections
like welded and riveted joints are not considered within this paper.

1.1. Empirically derived design formulas

The buckling experiment results shown in Fig. 1 are the basis for
the popular NASA SP-8007, a guideline for cylindrical shells, which
was published in 1965 and revised in 1968 [7]. The knock-down
factor qNASA of the NASA SP-8007, which can be calculated using
Eq. (1), is the result of a stochastic analysis and can be interpreted
as a lower bound of the buckling load of the buckling experiments
shown in Fig. 1. The corresponding design load NNASA is determined
by multiplying the KDF qNASA with the buckling load Nper of a per-
fect shell (shell with ideal geometry, boundary conditions and
material). This equation is only valid for isotropic and orthotropic
materials. In Eq. (1) is the equivalent thickness teq that is
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commonly used to determine the KDF of an orthotropic material.
The terms A11, A22, D11 and D22 are the extensional and bending
stiffness’s from the composite ABD matrix.

qNASA ¼ 1� 0:902 � ð1� e�xÞ

x ¼ 1
16

ffiffiffi
R
t

r
ðisotropicÞ ð1Þ

x ¼ 1
16

ffiffiffiffiffiffi
R
teq

s
with teq ¼ 3:4689 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11 � D22

A11 � A22

4

s
ðorthotropicÞ

The resulting KDFs of Eq. (1) cannot be used properly for com-
posite shells because most of the stiffness terms of the composite
ABD matrix are not considered, those terms have a significant
influence on the buckling load which was shown by Geier et al.
in [8]. Hühne et al. [9] show that the influence of imperfections
on the buckling load depends on the ply-layup. In order to deter-
mine a state of the art KDF for composite cylinders the sensitivity
to imperfections has to be considered.

1.2. Numerical design approaches for conventional imperfections

Substitute geometric imperfections can be used, in order to esti-
mate the influence of geometric imperfections on the buckling
load. A classification for those theoretical geometric imperfections

as ‘‘realistic”, ‘‘worst” and ‘‘stimulating” was proposed by Winter-
stetter and Schmidt [10] in 2002.

Arbocz [11] used measured geometric mid-surface imperfec-
tions, which consist of a cloud of measured points representing
the mid-surface of the cylindrical shells. They deliver a very accu-
rate representation of geometric mid-surface imperfections but for
those ‘‘realistic” geometric imperfections the cylinder has to be
manufactured and measured.

Buckling eigenmode-affine imperfections (BEAI) are ‘‘stimulat-
ing” and ‘‘worst” geometric imperfections and can for example
be obtained by using a general purpose finite element code. In a
subsequent non-linear simulation the buckling eigenmodes are
applied in the cylindrical shell and the corresponding buckling load
can be determined. A similar imperfection type is the axisymmet-
ric imperfection (AI) which has been extensively investigated by
Tennyson and Muggeridge [12] in 1969. Unfortunately there is
no simple and unequivocal definition for both AI and BEAI regard-
ing amplitude and number characteristic imperfections.

In 2005 Hühne [13] proposed a physically based deterministic
concept for unstiffened cylindrical composite shells, the single-
perturbation load approach (SPLA) which is illustrated in Fig. 2.
The SPLA induces a single-buckle imperfection in the cylinder
using a single-perturbation load, after a certain threshold of the
perturbation load (P1) the buckling load is almost constant, the cor-
responding buckling load is defined as N1. A detailed investigation

Abbreviations and glossary

AI axisymmetric imperfection
b bending angle in [�]
bgmin critical bending angle of the CSBI principle in [�]
BCI geometric boundary condition imperfection
BEAI buckling eigenmode-affine imperfections
CSBI constant single-buckle imperfection
F axial load in [N]
FOSM first-order second-moment method
KDF knock-down factor
l probabilistic knock-down factor of the CSBI principle
MSI geometric mid-surface imperfection
N buckling load in [N]
NExp experimental buckling load in [N]
NNASA design buckling load of the NASA SP-8007
NMSI buckling load of a cylinder with mid-surface imperfec-

tions in [N]
Nper buckling load of a perfect cylinder in [N]

NSPLA buckling load of the SPLA (N1) in [N]
Nmeta buckling load in the metastable equilibrium in [N]
Ngmin buckling load in the global minimum in [N]
NCSBI design buckling load of the CSBI principle in [N]
P1 perturbation load of the SPLA in [N]
q knock-down factor in general
RF reaction forces (RFERF + RFGRF) in the bearing of the CSBI

principle in [N]
RFERF elastic restoring forces in [N]
RFGRF geometric response forces in [N]
SI Stiffness Imperfections
SPLA single perturbation load approach
v indentation displacement in [mm]
vmeta critical indentation displacement of the CSBI principle in

[mm]
w axial displacement in [mm]

Fig. 1. Distribution of the experimental data of axial compressed cylindrical shells
for different R/t ratios [4]. Fig. 2. Buckling load vs. perturbation load [11].
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