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a b s t r a c t

This study concerns numerical determination of the basic statistics of the effective elasticity tensor for
the rubber reinforced with the carbon black particles. This goal is achieved by an application of the iter-
ative and generalized stochastic perturbation technique implemented as the Stochastic Finite Element
Method and applied to the homogenization problem of such a composite. A fundamental difference of
this approach to the traditional Taylor expansion is in development of the basic equations for higher
order probabilistic characteristics, where traditional linearization procedure (expectation is approxi-
mated by the zeroth order term) has been replaced by sequential (iterative) symbolic calculation of these
characteristics. The radius of the carbon black particle has been chosen as the input Gaussian random
parameter and it affects both FEM-based and also analytical method of the effective tensor components
determination. Sensitivity analysis in addition to this radius together with the FEM computational error
for the homogenization problem are carried out here prior to the principal stochastic analysis. We con-
trast the iterative SFEM with two other probabilistic numerical methods, namely the classical Monte-
Carlo scheme and also semi-analytical probabilistic FEM strategy. Both stochastic perturbation and
semi-analytical method are related to the same polynomial response functions of the input random par-
ticle radius, but the first employs Taylor series expansion while the second – symbolic integration with
Gaussian PDF to calculate the final probabilistic characteristics of the effective tensor. This study shows
some remarkable differences in-between numerical and analytical homogenization methods in the con-
text of geometrical uncertainty in the RVE of such a composite.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Probabilistic analysis of the composite materials at different
geometrical scales and for various types of engineering materials
still affects modern trends in computational, experimental and
theoretical mechanics [6,9]. It is applied either with the use of his-
torically the oldest statistically motivated Monte-Carlo simulation
method, Bayesian approach, polynomial chaos [26], semi-
analytical strategies [8], kriging approach [12] or, alternatively,
with the use of stochastic perturbation technique [17]. It is essen-
tial to underline that the research focused on optimization of the
existing stochastic numerical techniques is still very extensive
towards minimization of the computational effort and maximiza-
tion of the resulting characteristics reliability and precision. Deter-
mination of higher order statistics is connected in the modern
engineering literature with an application of the Monte-Carlo sim-
ulation, semi-analytical approach and the generalized stochastic

perturbation technique, for instance [8,9], while the remaining
methods offer only the first two probabilistic moments. Computa-
tional analyses generally include composite materials models in
their original heterogeneous multiscale configuration or may be
related to some applications of the homogenization method, where
the effective equivalent medium is determined. The first group of
numerical simulations carried out dominantly with the Stochastic
Finite Element Method (SFEM) [9,24] focuses on both material
[1,14] and geometrical uncertainties [28] with Gaussian [7,8] and
non-Gaussian parameters [19] treated as random variables [9]
and fields [4,20]. The relevant studies deals with the linear elastic,
viscoelastic [29], elastoplastic deformations [28] as well as with
failure initiation [10], its propagation [22] and overall strength pre-
diction [27] for various composites. Considering particular compo-
nents of these composites one may of course notice polymers
[5,28,29] also in the form of nanocomposites [30] and widely
applied in civil engineering CFRPs [19,20] and various foams
including especially metallic materials [1,21]. These are grouped
into the following sub-classes: fiber-reinforced [16,23], particle-
reinforced materials [7], laminates [19] as well as honeycomb
[10] heterogeneous structures.
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An alternative approach is based on the homogenization
method, connected with the same probabilistic methods, where
equivalent statistically homogeneous medium is to be numerically
determined [6]. Various deterministic counterparts are based on
asymptotic homogenization method [2,18], characteristic defor-
mations of the RVE under uniform extensions [11] implemented
with the use of Finite Element Method [15] or using the direct vari-
ational estimates of homogenized material characteristics [3]. This
alternative has also some novel ideas as an application of the
asymptotic approach to the nanocomposites [30], for instance.
Homogenization method has been and still is applied in the con-
text of different composites sensitivities to their geometrical and
material parameters taking into account their shape, topology
and elastic properties contrast optimization [7,8,25].

The main objective of this work is to apply the novel iterative
generalized stochastic perturbation technique [8] implemented
together with the Finite Element Method [9,15] to calculate the
first four probabilistic characteristics of the effective elastic prop-
erties for the rubber-carbon black particle reinforced composites.
This very specific example has been chosen to analyze a composite
with an incompressible matrix, extreme contrast of the elastic
moduli for both components as well as Gaussian uncertainty in
the particle radius [7]. This study is focused also on numerical error
of the FEM solution itself obtained for different 3D solid finite ele-
ments types (tetrahedra and hexahedra) and density of the mesh
increasing far beyond most popular numerical experiments as well
as deterministic sensitivity of the effective characteristics in addi-
tion to the particle radius inside the cubic RVE. Probabilistic real-
ization of this problem is based on the Weighted Least Squares
Method (WLSM) approximation with the polynomial basis relating
effective tensor components with this radius, where statistical
optimization of its order is implemented. The weighting scheme
follows Dirac function to associate the largest importance to the
mean value of the input parameter being equal to the overall
importance of all the remaining trial test points. This optimal
approximation is further employed in the iterative perturbation-
based SFEM, Monte-Carlo simulation and semi-analytical integra-
tion technique to determine expectations, coefficients of varia-
tions, skewness and kurtosis of the effective tensor components
as the functions of the input coefficient of variation of the particle
radius. This analysis is carried out to determine the validity ranges
for the iterative perturbation method for homogenization prob-
lems with specific geometrical uncertainty inside the RVE.

2. Mathematical model of the composite

Let us consider a statistically heterogeneous and bounded con-
tinuum X � R3 with no initial stresses and strains consisting of
spherical carbon particles statistically uniformly distributed into
the homogeneous polymeric matrix (Fig. 1). We assume a perfect
contact in-between these two constituents throughout all the inter-
faces and also a complete lack of any contact of any two neighbor-
ing particles. The rubber and polymer phases work both in the
linear elastic regime and their material characteristics are uniquely
defined by their Young moduli and Poisson ratios, which are given
in a deterministic manner. We assume that the filler particles have
random Gaussian size distribution defined by the expectation and
standard deviation of their radii, namely E[R] and r(R). These oper-
ators are traditionally defined as [1,13] (see Figs. 1 and 2)

E½R� ¼
Z þ1

�1
R pRðxÞ dx; ð1Þ

and

rðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðRÞ

p
¼

Z þ1

�1
ðR� E½R�Þ2 pRðxÞ dx

� �1
2

; ð2Þ

where pRðxÞ is the probability density function assumed to have the
form

pRðxÞ ¼
1

rðRÞ
ffiffiffiffiffiffiffi
2p

p exp �ðx� E½R�Þ2
2r2ðRÞ

 !
: ð3Þ

We use further also skewness and kurtosis classically intro-
duced in probability theory in the following form (Monte–Carlo
simulation explores a variety of estimators, whose accuracy
depends on the few parameters):

bðRÞ ¼ l3ðRÞ
r3ðRÞ ; jðRÞ ¼ l4ðRÞ

r4ðRÞ � 3; ð4Þ

which equal both to 0 for Gaussian variables and where

lmðRÞ ¼
Z þ1

�1
ðR� E½R�Þm pRðxÞ dx; ð5Þ

denotes the mth central probabilistic moment of the variable R for
any natural number m. The main goal of further considerations is
to determine the basic probabilistic material characteristics of the
equivalent homogenized medium and we introduce for this purpose
the Representative Volume Element (Fig. 1) consisting of a single
rubber particle within the surrounding polymeric matrix in the
form of a cube (due to the same importance of all directions related
to Cartesian coordinates, which is affected by statistical isotropy of
the matrix and the whole composite themselves). We determine
numerically for this purpose the random displacement fields
ux1
i ; ux2

i ; ux12
i and random stress tensors rx1

ij ; r
x2
ij ; r

x12
ij satisfying

three specific linear elasticity elliptic boundary–value problems –
of uniaxial extension of the RVE (x1), of uniaxial extension (x2)
and also of the biaxial extension of the RVE (x12). We assume for
the needs of numerical analysis that there are non-empty subsets
of external boundaries of the domain X (with the dimensions
2d � 2d � 2d), namely @Xr and @Xu, where the stress and displace-
ment boundary conditions are defined.

According to the main idea of the generalized stochastic pertur-
bation technique [13], we need to solve the entire set of the bound-
ary value problems with the same boundary conditions and with
additionally modified input random radius R � RðfÞ; f ¼ 1; :::;N to
approximate the response function relating the effective tensor
components with this parameter using some polynomial deter-
ministic function. We look for the set of solutions to the bound-
ary–differential equation systems describing static equilibrium
around the mean value of this parameter, so that

rðfÞ
ij ðx;xÞ ¼ CijkleðfÞkl ðx;xÞ; ð6Þ

eðfÞkl ðx;xÞ ¼ 1
2

@uðfÞ
k ðx;xÞ
@xl

þ @uðfÞ
l ðx;xÞ
@xk

 !
; ð7Þ

rðfÞ
ij;jðx;xÞ ¼ 0; ð8Þ

uðfÞ
i ðxÞ ¼ ûiðxÞ; x 2 @Xu; ð9Þ

rðfÞ
ij ðx;xÞnj ¼ ~tðfÞi ðx;xÞ; x 2 @Xr: ð10Þ
Then we follow the finite set of integral variational equations to

get an appropriate numerical solution for the strain energy in the
context of the Finite Element Method. It yieldsZ
X
CijkleðfÞij de

ðfÞ
kl dX ¼

Z
@Xr

~tidu
ðfÞ
i dð@XÞ; ð11Þ

where the left hand side of Eq. (11) corresponds to elastic behavior
of the structure and the R.H.S. (Right Hand Side) is equivalent to the
stress boundary conditions applied. It needs to be mentioned that
indexing with respect to the RFM (Response Function Method)
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