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a b s t r a c t

Structural stability is one of the design requirements in laminated-glass beams and plates due their
slenderness and brittleness. In this paper the equations of the classical Euler theory for buckling of
isotropic monolithic beams are extended to laminated-glass beams using the effective thickness and
the effective Young modulus concepts. It is demonstrated that the dependency of the effective stiffness
on boundary conditions can be considered using buckling ratios of Euler theory corresponding to
isotropic linear monolithic beams. The analytical predictions are validated by compressive experimental
tests in simply supported beams. Fixed boundary conditions are difficult to reproduce in experimental
tests due to the brittleness of the glass and for this reason fixed–fixed and fixed–pinned boundary
conditions were validated using a finite element model.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated glass is a sandwich or layered material which con-
sists of two or more plies of monolithic glass with one or more
interlayers of a polymeric material with mechanical properties that
are time (or frequency) and temperature dependent [1]. Polyvinyl
butyral (PVB) is the most widely used interlayer material, although
the new ionoplastic interlayers improve the mechanical properties
of laminated glass for a broad range of temperatures [1]. Polyvinyl
butyral (PVB) is sold in thicknesses of 0.38 mm or a multiple of this
value (0.76 mm, 1.12 mm, and 1.52 mm).

Laminated glass is easy to assemble in a finite element model
but many small 3D elements are needed to mesh accurately
because the thickness of the viscoelastic interlayer is usually very
small compared with the dimension of the laminated-glass ele-
ment. Cubic elements in 3D and square elements in 2D generally
result in equations that are well conditioned but if the element
shape is greatly distorted from these ideal shapes, numerical diffi-
culties can arise [2]. If we wish to mesh the interlayer of a square
laminated-glass plate 2000 mm� 2000 mm with 2 cubic elements
along the thickness, we would need approximately 27:7� 106

elements only to mesh the interlayer. Moreover, if a quasi-static
analysis is performed taking into account the temperature and
time-dependent behavior of the interlayer, the time needed to
perform the calculation is considerably higher than that needed

for a static analysis. Consequently, the 3D models in laminated-
glass elements are very costly in time and memory.

The calculation of laminated-glass elements can be facilitated
by simplifying the viscoelastic solution using the quasi-elastic
method, which consists of describing the viscoelastic behavior of
the interlayer by an elastic behavior with parameters that depend
on the load duration and temperature [3–7]. This means that the
memory effect of the viscoelastic material is neglected and that
the mechanical properties are linear elastic but time dependent
[7–9].

The concept of effective thickness has been proposed in recent
years [7,9,10] based on the quasi-elastic solution. This method
consists of calculating the thickness (time and temperature depen-
dent) of a monolithic element with bending properties equivalent
to those of the laminated one, that is, the deflections provided by
the equivalent monolithic beam are equal to those of the layered
model with a viscoelastic core. The effective thickness can then
be used in analytical equations and simplified finite element mod-
els in place of the layered laminated-glass element [7,9–11]. The
effective-thickness concept is proposed in most of the technical
standards related to laminated glass and it is more readily applica-
ble in design practice. The effective-thickness concept is not easy
to implement in finite element programs because a monolithic
model with constant Young modulus and a temperature- and
time-dependent thickness has to be defined. As the effective thick-
ness is derived from the effective stiffness [7,9,10], an effective
Young modulus [11] can also be inferred from the effective stiff-
ness, this being more attractive to be used in numerical models
(a monolithic model with constant thickness is defined whereas
the Young modulus is time and temperature dependent). Thus,
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the effective-thickness and the effective Young modulus concepts
can be used interchangeably with the same accuracy.

The effective-thickness concept allows also stress-effective
thickness to be defined, i.e. the thickness of a monolithic beam
with equivalent bending properties in terms of stresses. However,
due to the fact that the buckling behavior is governed by its flexu-
ral stiffness, only the deflection effective thickness is considered in
this paper.

If laminated-glass elements are subject to compressive loads,
structural stability is one of the design requirements because
laminated-glass elements are brittle and slender. Due to the fact
that the stiffness of the interlayer is temperature and time depen-
dent, the same is true of the critical load, that is, the critical load of
a laminated-glass beam subject to constant compressive load
decreases with time.

Several analytical models have been proposed for determining
the critical load of a simply supported laminated-glass beam
[12–15] but only a few are devoted to other boundary conditions
[16]. In monolithic beams, the effect of the boundary conditions
is considered through the buckling ratio b (or alternatively with
the effective length Leff Þ whereas the stiffness EI is constant. In this
paper, we demonstrate that the effective stiffness also depends on
the boundary conditions and its effect can also be taken into
account through the buckling ratio b.

The aim of this paper is to propose a simplified method to cal-
culate critical loads in laminated-glass beams with different
boundary conditions using the Euler theory [17] of monolithic
beams, the quasi-elastic solution [8,9] and the effective-stiffness
concept [7–10]. As a means of validating the model, the critical
load of several laminated-glass beams, made of annealed glass
plies and a PVB core, were predicted using the effective stiffness
concept and validated by experimental tests and numerical
models.

1.1. The effective-thickness concept

The concept of effective thickness for calculating deflections in
laminated-glass beams under static loads was proposed by Calder-
one et al. [7] based on a previous work of Wölfel [18]. Later,
Galuppi and Royer-Carfagni [9] derived new equations for the
deflection effective thickness using a variational approach and
assuming that the deflection shape of the laminated-glass beam

coincides with that of a monolithic beam under the same load
and boundary conditions; that is, the deflection of the beam is
assumed to be:

w x; t; Tð Þ ¼ � gðxÞ
EI t; Tð ÞS

ð1Þ

where gðxÞ is a shape function that takes the form of the elastic
deflection of a monolithic beam with constant cross section under
the same load and boundary conditions as the laminated-glass
beam and where EI tð ÞS is the bending stiffness of the laminated-
glass beam given by:

EI t; Tð ÞS ¼
1

gSðt;TÞ
EIT 1þYð Þ þ 1�gSðt;TÞ

EIT

ð2Þ

where:

gSðt; TÞ ¼
1

1þ EH1H2H3wB
1þYð ÞG2ðt;TÞ H1þH3ð Þ

ð3Þ

The parameter wB [9] can be expressed as:

wB ¼ c
L2

ð4Þ

with c being a constant parameter which depends on the boundary
and load conditions [9].

Calderone et al. [7] proposed an effective stiffness for a
laminated-glass beam subjected to static loads, which is expressed
as:

EI t; Tð ÞS ¼ EITð1þ CS tð ÞYÞ ð5Þ
where

CSðt; TÞ ¼ 1
1þ 9:6 EH1H2H3

G2ðt;TÞ H1þH3ð ÞL2
ð6Þ

Eqs. (2) and (5) can be expressed in a unified form as

EI t; Tð ÞS ¼ EIT 1þ Y

1þ c EH1H2H3
G2ðt;TÞ H1þH3ð ÞL2

0
@

1
A ð7Þ

Eq. (6) proposed by Calderone et al. [7] is based on a previous
work of Wölfel devoted to composite sandwich structures under
various boundary and loading conditions, leading to different

Nomenclature

Eeff effective Young modulus
E Young modulus of glass layers
E2ðtÞ viscoelastic relaxation tensile modulus for polymeric

interlayer
G2ðtÞ viscoelastic relaxation shear modulus for the polymeric

interlayer
H1 thickness of glass layer 1 in laminated glass
H2 thickness of polymeric layer 2 in laminated glass
H3 thickness of glass layer 3 in laminated glass
HTOT H1 þ H2 þ H3

H0 H2 þ H1þH3
2

� �
I second moment of area

I1
H3

1
12

I3
H3

3
12

IT I1 þ I3 ¼ H3
1þH3

3
12

ITOT IT 1þ Yð Þ
K2ðt; TÞ viscoelastic bulk modulus

L length of a glass beam
Pcritðt; TÞ critical load
T temperature
T0 reference temperature

Y H2
0H1H3

IT ðH1þH3Þ

Lowercase letters
aT shift factor
b width of a glass beam
gðxÞ shape function (Galuppi and Royer Carfagni model)
t time
w deflection

Greek letters
g2 loss factor of the polymeric interlayer of laminated glass
m Poisson ratio of the glass layers
m2 t; Tð Þ viscoelastic Poisson ratio of the polymeric interlayer
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