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a b s t r a c t

Free vibration of anti-symmetric angle-ply plates with variable thickness is analysed using spline func-
tion approximation including the effect of shear deformation. The equations of motion for the plate
are derived using the theory of Yang, Norris and Stavsky. Assuming the solution in a separable form, a
system of coupled differential equations in displacement and rotational functions are obtained and these
functions are approximated by Bickley-type splines of order three. A generalised eigenvalue problem is
obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline
coefficients. Two and four layered plates consisting of two different materials and plies comprising of
same as well as different materials for two different boundary conditions are analysed. The effect of
material properties, ply orientation, number of lay ups, aspect ratio and coefficients of thickness varia-
tions on the frequency parameter are presented. The accuracy of the result is ascertained by convergence
and comparative study.

� 2015 Published by Elsevier Ltd.

1. Introduction

Plates with variable thickness are usually used in numerous
engineering applications. The significant characteristics of plates
of variable thickness is to alter the frequency and to reduce the
weight and size of the structure. Moreover, plates with non-
uniform thickness provides greater efficiency for vibration than
plates of constant thickness.

Aeronautical, aerospace, marine engineering and various
modern technologies are increasingly using composite laminated
structures. The strength and deformation of such structural ele-
ments are influenced by ply orientation, stacking sequence and
lamination material. The main aim of the designer is to control
unwarranted (undesirable) vibration which in return leads to the
failure of the structure. Composite materials have the ability to tai-
lor the mechanical properties. Further they offer high stiffness to
weight ratio, strength to weight ratios, better temperature resis-
tant and shock absorbing characteristics.

Laminated composite plates are usually analysed using classical
plate theory (CPT) and first order shear deformation theory (FSDT).
The transverse shear deformation is omitted in CPT, so it can only

analyse thin plates accurately. Whereas, composite plates have low
transverse shear modulus relative to the in-plane Young’s moduli
due to which transverse shear effects are more noticeable. FSDT
is commonly used to analyse the composite laminated plates.
The Yang et al. [1] was first to develop a shear deformable theory
for laminated anisotropic plates which is actually generalisation
of Mindlin’s theory.

Several articles on laminated composite plates can be seen in
the literature by various researchers, among them are Leissa [2],
Reissner [3], Bert and Chen [4], Reddy [5], Ferreira and Fernandes
[6], Qatu [7], Soedal [8], Szilard [9] and Chakraverty [10]. Various
methods are available for the analysis of plates such as Navier
method was used by Aghababaei and Reddy [11], Mantari et al.
[12], Thai and Choi [13] and Messina and Soldatos [14]. Moreover,
Thai and Kim [15], Bai and Chen [16] and Hashemi et al. [17]
analysed the free vibration of plates by applying Levy’s method.
Elmalich and Rabinovitch [18], Kucukrendeci and Kucuk [19] and
Thai et al. [20] adopted finite element method for analysing the
free vibration of plates. Narita [21], Fazzolari and Carrera [22]
and Fiorenzo et al. [23] carried out vibration analyses of plates
based on Rayleigh–Ritz method. Ding et al. [24] and Chen and
Lue [25] presented state-space method for analysing the free vibra-
tion of laminated rectangular plates. Shu [26] discussed differential
quadrature method and its engineering applications. Further, Liew
et al. [27], Ferreira et al. [28] and Kamarian et al. [29] studied the
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vibration of laminated plates based on differential quadrature
method. Moreover, free vibration of laminated plates problems
were solved using Meshless method by Ferreira et al. [30] and
Xiang and Kang [31]. Roque et al. [32], Ferreira [33] and Ferreira
and Fasshauer [34] computed the frequencies of plates by using
radial basis functions. Fazzolari and Carrera [35] and Liu et al.
[36] used Galerkin method for analysing vibration of plates. Dis-
crete singular convolution method was adopted by Zhu and Wang
[37] and Wang et al. [38] for solving the plate’s vibrational prob-
lem. Vibration of plates was analysed using extended Kantorovich
method by Rahbar and Rostami [39] and Fallah et al. [40]. Mixed
variational formulations were adopted to analyse the free vibration
of plates by Yu [41], Kim [42] and Phoenix et al. [43]. Moreover,
Noor [44], Demasi [45], Liu and Xing [46] and Messina [47] used
exact solution for solving the problems of free vibration of plates.
In this context, we used spline method for the free vibration anal-
ysis of antisymmetric angle-ply plates of variable thickness.

In addition to that antisymmetric angle ply laminates were
studied by Patil [48] under various shear deformation theories.
Further, superposition method was used to analyse the free vibra-
tion of unsymmetric cross-ply and antisymmetric angle-ply func-
tionally graded plates by Kshirsagar and Bhaskar [49]. Simply
supported cross-ply and antisymmetric angle ply plates were anal-
ysed using first-order shear deformation theory by Thai and Choi
[13] and Sadoune et al. [50]. Free vibration of anti-symmetric lam-
inated thin square plate was analysed by Aydogdu and Timarci [51]
using Ritz method.

Some of the researchers analysed the plates having non-
uniform thickness such as linear thickness variation of plates was
considered by Bambill et al. [52] and Civalek [53], parabolic thick-
ness variation by Xu et al. [54], quadratic thickness variation by
Grigorenko et al. [55], cubic thickness variation by Zenkour [56]
and exponential thickness variation by Lal [57].

The present wok analyse the free vibration of antisymmetric
angle-ply plates including shear deformation theory. The thickness
variation is considered in x direction which is assumed to be linear,
exponential and sinusoidal. A system of coupled differential equa-
tions consisting of three displacement and two rotational functions
are approximated by cubic splines. A spline technique is used due
to the possibility, that a chain of lower order approximations
which can yield a greater accuracy than a global high order approx-
imation [58]. Collocation with these splines yields a set of field
equations which, along with the equations of boundary conditions,
reduce to a system of homogeneous simultaneous algebraic equa-
tions on the assumed spline coefficients. The resulting generalised
eigenvalue problem is solved for a frequency parameter, using
eigensolution technique, to obtain as many frequencies as
required, starting from the least. From the eigenvectors, the spline
coefficients are computed fromwhich the mode shapes can be con-
structed. Parametric studies includes the effect of aspect ratio, ply
angle and three different thickness variations on the frequency
parameter of two and four layered plates consisting of two differ-
ent materials. Numerical results are presented in terms of graphs
and tables.

2. Formulation of the problem

Consider a rectangular plate in the Cartesian coordinate system
x, y and zwith the xy plane placed at mid-depth (reference surface)
of the plate and z is taken to be normal to the plate shown in Fig. 1.
Here a and b are the lengths of the sides of the plate along x and y
directions respectively, h is the thickness of the plate and hk is the
thickness of the kth layer.

The equations of motion in terms of stress and moment resul-
tants (neglecting body forces) are

Nx;x þ Nxy;x ¼ P
@2u
@t2

Nxy;x þ Ny;y ¼ P
@2v
@t2

Qx;x þ Qy;y ¼ P
@2w
@t2

Mx;x þMxy;y � Qx ¼ I
@2wx

@t2

Mxy;x þMy;y � Qy ¼ I
@2wy

@t2
ð1Þ

where

ðP; IÞ ¼
Z
z
qð1; z2Þdz ð2Þ

The displacement components based on YNS theory [1] are
assumed to be

u ¼ u0ðx; y; tÞ þ zwxðx; y; tÞ

v ¼ v0ðx; y; tÞ þ zwyðx; y; tÞ

w ¼ wðx; y; tÞ ð3Þ
where u, v and w are the displacement components in the x, y and z
directions respectively, u0, v0 and w are the in-plane displacements
of the middle plane and wx and wy are the shear rotations of any
point on the middle surface of the plate.

The strain–displacement relations of linear elasticity may be
written as

ex ¼ @u0

@x
þ z

@wx

@x

ey ¼ @v0

@y
þ z

@wy

@y

cxy ¼
@u0

@y
þ @v0

@x
þ z

@wx

@y
þ @wy

@x

� �

cxz ¼ wx þ
@w
@x

cyz ¼ wy þ
@w
@y

ð4Þ

The stress–strain relations for the kth layer, after neglecting
transverse normal strain and stress, are of the form

rðkÞ
x

rðkÞ
y

sðkÞxy

sðkÞyz

sðkÞxz

0
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1
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¼
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11 CðkÞ
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16 0 0
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0
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eðkÞy
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0
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ð5Þ

where Q ðkÞ
ij , as functions of CðkÞ

ij and h, are fully furnished in [59].
The stress resultants and stress couples are given by

ðNx;Ny;Nxy;Qx;QyÞ ¼
Z
z
ðrx;ry; sxy; sxz; syzÞdz

ðMx;My;MxyÞ ¼
Z
z
ðrx;ry; sxyÞzdz ð6Þ
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