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a b s t r a c t

This contribution proposes a general constitutive model to simulate the orthotropic stiffness, pre-peak
nonlinearity, failure envelopes, and the post-peak softening and fracture of textile composites.
Following the microplane model framework, the constitutive laws are formulated in terms of stress and

strain vectors acting on planes of several orientations within the material meso-structure. The model
exploits the spectral decomposition of the orthotropic stiffness tensor to define orthogonal strain modes
at the microplane level. These are associated to the various constituents at the mesoscale and to the
material response to different types of deformation. Strain-dependent constitutive equations are used
to relate the microplane eigenstresses and eigenstrains while a variational principle is applied to relate
the microplane stresses at the mesoscale to the continuum tensor at the macroscale.
The application of the model to a twill 2 � 2 shows that it can realistically predict its uniaxial as well as

multi-axial behavior. Furthermore, the model shows excellent agreement with experiments on the axial
crushing of composite tubes, this capability making it a valuable design tool for crashworthiness appli-
cations.
The formulation is computationally efficient, easy to calibrate and adaptable to other kinds of compos-

ite architectures such as 2D and 3D braids or 3D woven textiles.
� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Thanks to their excellent specific mechanical performances and
the recent developments in manufacturing technologies, the range
of engineering applications of textile composites is continuously
expanding. Current applications include land, marine and air trans-
portation, wind and tidal energy production, and blast protection
of civil infrastructures and vehicles [1–3]. However, in order to
take advantage of the outstanding characteristics of these materi-
als, design tools to simulate the orthotropic stiffness, pre-peak
nonlinearity, failure envelopes, and the post-peak softening and
fracture are quintessential.

Since the pioneering works by Ishikawa and Chou [4,5] and
Ishikawa et al. [6], several formulations have been proposed, with
varying degrees of success, to model the elastic properties of textile
composites [7–13] and their failure mechanisms [14–20]. In gen-
eral, however, these models stand on strength criteria to describe
failure of the mesoscale constituents thus lacking completely of
any description of the fracture mechanics involved. This is a

serious deficiency being extensive intra-laminar cracking one of
the main failure mechanisms in most applications of textile
composites.

Modeling the fracturing behavior of textile composites, not only
requires a fracture mechanics framework, it also urges the
acknowledgment of their quasi-brittle character which highly
affects the process of crack nucleation and growth. In facts, due
to the complex mesostructure characterizing quasi-brittle materi-
als (such as composites and nanocomposites, ceramics, rocks, sea
ice, bio-materials and concrete, just to mention a few), the extent
of the non-linear Fracture Process Zone (FPZ) occurring in the pres-
ence of a macrocrack is usually not negligible [21]. The stress field
along the FPZ is nonuniform and decreases with crack opening
gradually, due to discontinuous cracking, crack bridging by fibers,
and frictional pullout of inhomogeneities. As a consequence, the
fracturing behavior and, most importantly, the energetic size effect
and the quasibrittleness effect associated with structure geometry,
cannot be described by means of the classical Linear Elastic Frac-
ture Mechanics (LEFM). To capture the effects of a finite FPZ size,
the introduction in the formulation of a characteristic (finite)
length scale of the material is necessary [21,22]. This is attempted
in the present work.
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Inspired by a recent theoretical framework for unidirectional
composites by Cusatis et al. [23,24], this contribution aims at
proposing a general constitutive model to simulate the damaging
and fracturing behavior of textile composites. The formulation
stands on the definition of strain-dependent constitutive laws in
terms of stress and strain vectors acting on planes of several orien-
tations within the material meso-structure. In this way, the model
can easily capture various physical inelastic phenomena typical of
fiber and textile composites such as: matrix microcracking, micro-
delamination, crack bridging, pullout, and debonding.

Thanks to the coupling with the crack band model [25,26], the
formulation is endowed with a characteristic length dependent
on the strength and the fracture energy of the material. This is
key to capture the intra-laminar size effect, a salient feature of
composite structures. This aspect, too often overlooked in the liter-
ature on composites, is a determinant factor for damage tolerance
design of large composite structures.

2. Theoretical framework

2.1. Microplane model

Inspired by the slip theory of plasticity pioneered by Taylor [27]
and later refined by Batdorf and Budiansky [28], the microplane
theory was originally developed to describe the softening damage
of heterogeneous but statistically isotropic materials such as con-
crete and rocks [29,30]. Since its introduction in the early 1980s,
the microplane model for concrete has evolved through 7 progres-
sively improved versions labeled as M1 [29,30], M2 [31], M3 [32],
M4 [33,34], M5 [35], M6 [36], M7 [37] and it has been recently
adopted for the simulation of concrete at early age [38]. Micro-
plane models have also been developed for other complex materi-
als such as jointed rock [39], sand, clay, rigid foam, shape memory
alloys, and unidirectional and textile composites [23,24,40–44]. A
high order microplane model [45] was also derived recently on
the basis of an underlying discrete model [46,47].

A key feature of the microplane model is that the constitutive
laws are formulated in terms of the stress and strain vectors acting
on a generic plane of any orientation within the material meso-
structure, called the microplane. These planes can be conceived as
the tangent planes of a unit sphere surrounding every point in
the three-dimensional space (Fig. 1a). The microplane strain vec-
tors are the projections of the macroscopic strain tensor, whereas
the macroscopic stress tensor is related to the microplane stress
vectors via the principle of virtual work. The adoption of vectors
rather than tensors makes the approach conceptually clearer while
the introduction of microplanes allows to inherently embed the
effect of the mesostructure into the formulation.

In this contribution, a kinematically constrained microplane
model is adopted. This means that the strain vector on each micro-
plane is the projection of the macroscopic strain tensor. In kelvin
notation [48,49] this reads:

eP ¼ Pe ð1Þ

where eP ¼ eN eM eL½ �T represents the microplane strain vector
(Fig. 1a) with eN ¼ normal strain component and eM and eL ¼ shear
strain components. Further,

P ¼
N11 N22 N33
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is a 3� 6 matrix relating the macroscopic strain tensor to the
microplane strain as a function of the plane orientation. As matter
of fact, Nij ¼ ninj; Mij ¼ ðminj þmjniÞ=2 and Lij ¼ ðlinj þ ljniÞ=2,
where ni;mi and li are local Cartesian coordinate vectors on the
generic microplane with ni being the i-th component of the
normal (Fig. 1a). With reference to the spherical coordinate
system represented in Fig. 1b, the foregoing components can
be expressed as a function of the spherical angles h and
u : n1 ¼ sin h cosu; n2 ¼ sin h sinu, n3 ¼ cos h while one can
choose m1 ¼ cos h cosu; m2 ¼ cos h sinu; m3 ¼ � sin h which
gives, for orthogonality, l1 ¼ � sinu; l2 ¼ cosu and l3 ¼ 0.

According to the microplane framework, the constitutive laws
are then defined at the microplane level in a vectorial form. This
makes the formulation conceptually clear and allows embedding
the effect of the direction of damage in the constitutive law auto-
matically. After the microplane stress vectors rP are computed, the
macroscopic stress tensor is defined in a variational sense through
the principle of virtual work:

r ¼ 3
2p

Z
X
PTrPdX ð3Þ

where X is the surface of a unit sphere representing all the possible
microplane orientations.

2.2. Spectral decomposition of the elastic tensor

In the microplane formulation, the material anisotropy is
addressed by decomposing the stress and strain tensors into ener-
getically orthogonal modes through the spectral stiffness decompo-
sition theorem [50–53]. The following sections are intended to
provide a brief introduction of the theory.

2.2.1. Spectral decomposition of the elastic tensor
The elastic behavior of a general anisotropic material can be

expressed in Kelvin notation [48,49] as:

r ¼ Ce ð4Þ

where r ¼ r11 r22 r33
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e12�T are the contracted forms of the stress and strain

second-order tensors and C represents the contracted form of the
fourth-order elastic tensor. The indices refer to Cartesian coordinates
xi (i ¼ 1;2;3) as defined in (Fig. 1a and b). It is worthmentioning here
that the factor

ffiffiffi
2

p
assures that both the stiffness tensor and its col-

umn matrix have the same norm, given by the sum of the squares
of their elements.

According to the spectral decomposition theorem [50–53], the
stiffness matrix C can be decomposed as follows:

C ¼
X
I

kðIÞCðIÞ ð5Þ

(a) (b)

Fig. 1. Schematic representation of (a) the Representative Unit Cell of a 2 � 2 twill
composite with its local coordinate system and the microplanes used to define the
constitutive laws of the material; (b) local spherical coordinate system.
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