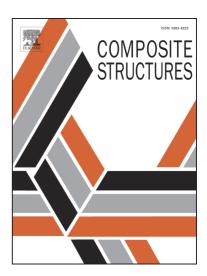
Accepted Manuscript

Magnetic Carbonyl Iron/Natural Rubber Composite Elastomer and Its Magnetorheology


Hyo Seung Jung, Seung Hyuk Kwon, Hyoung Jin Choi, Jae Heum Jung, Young Gil Kim

PII: S0263-8223(15)00939-3

DOI: http://dx.doi.org/10.1016/j.compstruct.2015.10.008

Reference: COST 6916

To appear in: Composite Structures

Please cite this article as: Jung, H.S., Kwon, S.H., Choi, H.J., Jung, J.H., Kim, Y.G., Magnetic Carbonyl Iron/Natural Rubber Composite Elastomer and Its Magnetorheology, *Composite Structures* (2015), doi: http://dx.doi.org/10.1016/j.compstruct.2015.10.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Submitted for publication to "Composite Struct." (2015-7)

Magnetic Carbonyl Iron/Natural Rubber Composite Elastomer and Its Magnetorheology

Hyo Seung Jung, ¹ Seung Hyuk Kwon, ¹ Hyoung Jin Choi, ¹ Jae Heum Jung, ² Young Gil Kim ²

¹Department of Polymer Science and Engineering, Inha University, Incheon 402-751, Korea ²Materials Development Team, Daeheung Rubber & Technology Co., Kimhae 621-884, Korea

*Corresponding author: (H. J. C.) E-mail: hjchoi@inha.ac.kr Tel: +82-32-860-7486. Fax: +82-32-865-5178.

ABSTRACT

Mangetorheological (MR) elastomer composites, consisting of natural rubber and carbonyl iron (CI), were fabricated in two different forms of isotropic and anisotropic states. In the case of the anisotropic MR elastomer sample, it was cured under an applied external magnetic field. Therefore, the dispersed CI particles were pre-aligned in the direction of the applied magnetic field. To confirm the arrangement of CI particles in the elastomer composite, a mapping method by scanning electron microscopy was used. The MR effect of these MR elastomer samples was measured using a rotational rheometer under an external magnetic field. The results showed that as the magnetic field strength increases, the storage moduli increased depending on the angular frequency at a constant shear strain. Higher MR performance from both the viscoelastic characteristics and MR efficiency were also observed for the anisotropic MR elastomer compared to the isotropic MR elastomer.

Download English Version:

https://daneshyari.com/en/article/6706293

Download Persian Version:

https://daneshyari.com/article/6706293

<u>Daneshyari.com</u>