
Nonlinear buckling of fibre-reinforced unit cells of lattice materials

Carlo Zschernack a,⇑, M. Ahmer Wadee b, Christina Völlmecke a

a Stability and Failure of Functionally Optimized Structures Group, Institute of Mechanics, School V, Technische Universität Berlin, Sekr. MS 2, Einsteinufer 5, 10587 Berlin, Germany
bDepartment of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

a r t i c l e i n f o

Article history:
Available online 10 October 2015

Keywords:
Mode interaction
Analytical modelling
Lattice materials
Structural stability
Nonlinear mechanics

a b s t r a c t

Truss-based lattice materials are cellular materials with an outstanding potential for multi-functional
use. This is owing to properties of high compressive strength to density ratios combined with a periodic
and open structure. However, such structures at low relative densities are particularly vulnerable to
elastic buckling failure. Fibre-reinforcement that increases the buckling strength of lattice materials
is proposed and the behaviour of unit cells that are tessellated within the lattice is investigated.
A two-dimensional square orientated unit cell and a three-dimensional tetrahedron-shaped unit cell
are both modelled discretely using energy principles with the nonlinear interactive buckling behaviour
being analysed. The analytical approach, based on a perturbation method, exhibits excellent agreement
for the mechanical response when compared to results from numerical continuation for moderately
large displacements. A fundamental understanding of the mechanical behaviour of a unit cell can be
upscaled in future work. It is postulated that this will enable the determination of the constitutive
behaviour of such lattice materials.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the course of the last few decades, cellular materials, for
example metallic foams or honeycombs, have emerged in various
engineering applications, such as core materials in sandwich pan-
els, due to the combination of advantageous mechanical, thermal
and acoustic properties [1]. Recent progress in additive manufac-
turing has enabled the production of truss-based lattice materials
that, according to [2], outperform other cellular materials particu-
larly in terms of the strength-to-density ratio. Lattice materials
tend to have periodic, open topologies that offer possibilities of
combining structural functions with thermal application, as shown
in [3], or in medical applications [4]. However, the compressive
strength of such materials may be limited by the collapse mecha-
nism of the respective unit cell from which the lattice material is
composed. Cellular materials comprising slender trusses, and
hence low relative densities, are known to be prone to elastic buck-
ling of their internal structure [5]. In the current context, relative
density �q is defined by the expression:

�q ¼ q�

qs
ð1Þ

and refers to the ratio of the densities of the actual cellular material
q� to that of a solid body made from the parent material qs. The cor-
relation between low relative densities and an increased vulnerabil-
ity to elastic buckling was demonstrated experimentally for
different geometries and materials in [6] for �q ¼ 0:03 and [7] for
�q ¼ 0:014. A mechanism for increasing the strength in axial com-
pression that is widely applied in civil engineering is to reinforce
compression members by introducing pretensioned elements such
as cable stays. This leads to a higher buckling resistance as the
cables help to restrain the structure against the initial displacement
during buckling [8–13]. By transferring this concept towards lattice
materials the maximum compressive strength can be potentially
increased beyond the conventional eigenvalue buckling load while
avoiding a considerable gain in self-weight, or in the current case
avoiding a significant increase in �q.

The objective of the current work is to investigate the potential
effect of interwoven fibres on the critical and post-buckling
response of lattice materials. Therefore, a fibre-reinforced lattice
material is proposed based on an existing square orientated lattice
material discussed in [6]. The deformational behaviour of the unit
cell in the internal structure under axial compression is investi-
gated using an analytical approach focusing on elastic buckling
behaviour in the nonlinear range. Discrete models of unit cells
comprising rigid links and springs, initially in two-dimensions
and subsequently in three-dimensions are formulated using total
potential energy principles. The performance of each model is eval-
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uated in terms of the critical and post-buckling behaviour both
analytically and numerically. Potentially important nonlinear
interactions between different instability modes in the post-
buckling range and the consequences to the overall stability are
investigated. It has been demonstrated previously that a
fundamental understanding of system behaviour can facilitate
exploitation of these lightweight materials with safety [14]. The
article concludes with a discussion where some detailed sugges-
tions for further work are made.

2. Fibre-reinforced square orientated lattice material

2.1. Material development

Fig. 1 shows a square orientated lattice material suggested and
experimentally evaluated with respect to its out-of-plane com-
pressive behaviour in [6]. Fig. 1(b) emphasises the vulnerability
to elastic buckling failure of the internal structure with low relative
densities. This failure mechanism may be suppressed by a square
lattice structure that is reinforced by fibres. The fibres contribute
to the buckling resistance and hence to the overall compressive
strength of the lattice material. A computer aided design (CAD)
model of such a fibre-reinforced lattice material is presented in
Fig. 2.

2.2. Model development

A unit cell of the internal fibre-reinforced structure is
modelled to obtain a deeper understanding of the deformational
behaviour at cell level during elastic buckling. Therefore, a
cross-shaped unit cell, as highlighted in Fig. 2(b), is modelled as
a multiple-degree-of-freedom system in two dimensions, as rep-
resented in Fig. 3. The horizontal and vertical struts are modelled
by pin-jointed rigid links, whereas the joints are reinforced by
rotational springs of stiffness cy. The horizontal strut is connected
to the vertical strut at mid-height rigidly. Moreover, a lateral
spring acts with stiffness k at mid-height of the horizontal strut
to model the lateral resistance contributed by the interwoven
fibres. The cell is assumed to be fully fixed at the upper and lower
ends. Hence, the x-displacement and rotation of the outer links of
length a is prevented such that they remain vertical. The respec-
tive ends of the horizontal crossarm, assigned with length b, are
allowed to move in the x- as well as the z-direction. However,
it is assumed that they remain horizontal as well as at the same
height as the rigid corner. This enables the comprehensive
description of the deformational behaviour at the cell level using
only two generalised coordinates q1; q2. In the case where one
cell would be embedded into a grid of many cells, the constraints
arising from the neighbouring cells would need to be considered
also.

2.3. Total potential energy

The total potential energy function V for a single cell is formu-
lated by evaluating the total strain energy stored in all the springs
U and the work done by the external load PD [15]:

Vðqi; PÞ ¼ UðqiÞ � PDðqiÞ ð2Þ
where currently i ¼ f1;2g. The total strain energy is decomposed
into two constituent parts, the contribution from the longitudinal
springs UL and those from the rotational springs UR. These terms
are developed by considering an arbitrarily deflected state in the
xz-plane, as shown in Fig. 3(b). The energy stored in the lateral
spring gives the expression:

UL ¼ kl2

8
q1 þ q2ð Þ2: ð3Þ

For the strain energy stored in the rotational springs, the behaviour
of the horizontal strut becomes significant due to the rigid joint at
mid-height. Hence, UR consists of one component being active, i.e.
non-zero, for every deflected shape and a second component being
non-zero only for buckling shapes where q1 – q2. This leads to the
expression:

UR ¼ cy
2

h21 þ h23 þ h24 þ h26 þ ðh1 � h2Þ2 þ ðh2 þ h3Þ2
h

þðh4 � h5Þ2 þ ðh5 þ h6Þ2
i
; ð4Þ

in which:

h1 ¼ arcsinðq1Þ; h2 ¼ arcsinðq2�q1Þ; h3 ¼ arcsinðq2Þ;
h4 ¼ arcsin

q1�q2

2

� �
; h5 ¼ arcsinðq2�q1Þ; h6 ¼ arcsin

q2�q1

2

� �
:

The end-shortening displacement D contributes to the work done
by the load P and is given by the expression:

D ¼ l 3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðq2 � q1Þ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

2

q� �� �
: ð5Þ

Assuming only moderately large deformations, the energy is
expressed as a power series and is truncated after order four. The
total potential energy V can be non-dimensionalized by dividing
through the rotational stiffness cy, thus:

eV ðq1;q2;pÞ¼
11
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ð6Þ
with the now non-dimensionalized parameters given by:

eV ¼ V
cy

; K ¼ kl2

cy
; p ¼ Pl

cy
:

The potential energy expression is also diagonalized using the
following transformation:

u1 ¼ q1 þ q2; u2 ¼ q1 � q2: ð7Þ
This results in the diagonalized non-dimensional total potential
energy expression Aðu1;u2;pÞ:

Aðu1;u2;pÞ ¼ 1
2
u2
1 þ 5u2
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� �
: ð8ÞFig. 1. Photographs of a square orientated lattice material showing (a) the

geometry and (b) the deformational behaviour exhibiting fibre buckling within
the internal structure [6].
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