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a b s t r a c t

A numerical study of the onset and growth of debonds at fibre–matrix interfaces, for a fibre bundle under
far field biaxial transverse loads, is presented. The behaviour of the fibre–matrix interface cracks was
studied by means of a Linear Elastic–Brittle Interface Model (LEBIM). The simplified, but representative,
model of an actual unidirectional lamina considered included ten fibres embedded in a matrix cell whose
external dimensions were much larger than the fibre radius. The results presented extend the results
obtained by the authors in previous studies using a single fibre model. The aim was, firstly to predict
the failure loads (critical loads) originating the first debond onset in a small bundle of fibres and, sec-
ondly, to verify the unstable character of subsequent debond growth under transverse loads. The failure
curves obtained in this simplified problem help to elucidate some aspects of the failure mechanisms of an
actual composite material subjected to these kinds of loads.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The use of composite materials in the manufacturing of engi-
neering components and structures (in a wide variety of industries
such as aeronautical, automotive, naval, wind energy and others)
has increased significantly over the last few years. Nowadays, in
the aeronautical industry, composites are included in critical parts
of commercial aircrafts, thus the structural responsibility for these
kinds of materials is very high.

Current knowledge about damage and failure mechanisms in
composite materials is not advanced enough to develop physically
based criteria for some types of failure. Nevertheless, the use of
composite materials is becoming more and more widespread.
These facts make it especially interesting and useful to carry out
research in this area. The use of alternative models based on
assumptions different to those made in classical Linear Elastic
Fracture Mechanics (LEFM), seems to be a promising approach,
firstly, to complement the understanding of the different failure
mechanisms involved within composite materials and, secondly,
to help with predictions of failure loads in the design of composite
structures.

It is evident that the interfaces between the constituents of
composite materials play a significant role in failure mechanisms
[1–5]. Particularly at the microscale, the level in which interaction
between fibres and matrix takes place, the role of interfaces and

interphases is well recognised, see [6–8] and references therein.
Experimental, numerical and semi-analytical studies of the inter-
fibre failure (also called matrix failure) of a single fibre embedded
in a matrix under biaxial transverse loads developed by the present
authors and coworkers can be found in [8–10]. These studies show
the influence of a secondary transverse load (tension or compres-
sion) on the generation of the damage dominated by a primary
transverse tension when the secondary load is applied perpendic-
ularly to the primary transverse tension (creating a biaxial stress
state).

Numerical studies for a single fibre embedded in a large matrix
based on the Boundary Element Method (BEM), a numerical tech-
nique very suitable for micromechanical analyses, and interfacial
fracture mechanics were carried out in [11–14].

The present authors, in some recent studies [8,15], have made
advances in the quantitative prediction for the influence of the sec-
ondary transverse load on the single fibre configuration, obtaining
a failure curve in which both tensile and compressive loads are
considered. The BEM and the Linear Elastic – (perfectly) Brittle
Interface Model (LEBIM) were used to study and characterise the
behaviour of the fibre–matrix interface in these investigations.

The aim of the present study is to make further advances
regarding our understanding of inter-fibre failure in a unidirec-
tional composite lamina (by means of a convenient combination
of BEM and LEBIM), by modelling a more representative problem
of an actual unidirectional lamina. Thus, a bundle of ten fibres,
embedded in a matrix whose external dimensions are much larger
than the radius of the fibres, is studied in this investigation.
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An extensive review of the literature concerning the problem of
an elastic circular inclusion embedded in an elastic matrix with or
without a partial debond can be found in [4,7]. Details of the LEBIM
implementation in a BEM code are presented in [7,15]. Additional
details about the weak formulation used to impose interface con-
ditions are presented in [16,17]. Some fundamental results regard-
ing the computation of the Energy Release Rate (ERR) in the LEBIM
can be found in [8,18–21].

Many authors have studied different approaches to model the
fibre–matrix interface behaviour in order to investigate the prob-
lem of multiple fibres embedded in a matrix. The problem of an
infinite matrix with circular elastic inclusions, using the Galerkin
Boundary Integral Method and considering spring-like interface
conditions, is solved in [22] and considering a linear elastic mate-
rial between matrix and fibres (interphase) in [23]. A multifibre
model and a non-linear finite element code to obtain effective
elasto-plastic transverse properties for a unidirectional composite
is used in [24]. An analytical and numerical model comparison,
which included periodically dispersed cylindrical fibres, was later
presented in [25] to obtain effective transverse properties. A
cohesive zone formulation along fibre matrix interfaces and a
matrix plastic deformation are included in a finite element analy-
sis to study the effect of compressive transverse loads in [26]
and its combined effect with out-of-plane shear loads in a
representative volume element of a composite in [27]. The effect
of the interface properties included in a cohesive zone formula-
tion in a random distribution of fibres under transverse tension
is studied in [28]. Damage models for studying fibre–matrix
debonds and matrix cracking by means of a cohesive interface
element formulation are used in [29] and for obtaining a
meso-scale traction-separation curve in [30]. An analytical
method for studying interface cracks in a multifibre model is
developed and compared with an interface cohesive zone formu-
lation in [31–33].

According to [34,35], periodic distributions of fibres may be
used to predict effective properties of composites. However, due
to the significant influence of the stochastic nature of these mate-
rials on the microscopic distribution of stresses and strains, proper
random distributions of fibres are necessary for modelling debond
initiation, growth and subsequent matrix cracking.

Although, as shown above, several investigations have been
devoted to the study of the fibre–matrix interface debond problem,
some questions still remain to be answered. Some of these ques-
tions are related to the following: the prediction of the failure
loads, the load biaxility effect, the accuracy of the interfacial stress
field, the effect of randomness in the fibre distribution, the fibre
size effect, the mesh dependency of the sequence of interface fail-
ures and the study of the instability of the debonds growth. In the
present study some of the above questions are investigated. This
paper is organised as follows. Firstly, the LEBIM and the interface
failure criterion used are briefly described. Secondly, the plane
strain problems for a group of circular inclusions (representing
an actual bundle of parallel long fibres taken from a micrograph),
under a remote biaxial transverse loading, are introduced. Thirdly,
the BEM is applied to obtain a numerical solution for a sequence of
fibre–matrix interface debond onsets and growths at different
fibres in the above mentioned problem. The numerical results
include a study of the crack path formed by the sequence of
debonds in the fibre–matrix system. Finally, failure curves for a
bundle of fibres under biaxial transverse loads are obtained and
discussed.

2. LEBIM interface failure criterion

As shown in [7,8,15], the LEBIM can be used in microscale
models to simulate damage initiation and propagation at the

fibre–matrix interface. In this section, the LEBI constitutive law
and the interface failure criterion developed in [7,8,15,36] are
briefly reviewed. The continuous spring distribution that models
an elastic layer (interphase) along a fibre–matrix interface is
governed by the following simple linear elastic-(perfectly) brittle
law1 written at an interface point x:

Linear Elastic
interfaceðundamagedÞ

rðxÞ ¼ kndnðxÞ;
sðxÞ ¼ ktdtðxÞ;

�
GðxÞ < GcðwðxÞÞ;

Broken
interface

rðxÞ ¼ knhdnðxÞi�;
sðxÞ ¼ 0:

�

ð1Þ
where rðxÞ and sðxÞ are, respectively, the normal and tangential
components of the tractions in the elastic layer along the interface,
and where dnðxÞ and dtðxÞ are, respectively, the normal and tangen-
tial relative displacements between opposite interface points. kn
and kt denote the normal and tangential stiffnesses of the spring
distribution.

It is assumed that the crack tip at x advances (or the interface
breaks at point x) when the corresponding ERR GðxÞ reaches the
critical ERR value GcðwðxÞÞ, that is GðxÞ ¼ GcðwðxÞÞ, where
tan2 w ¼ GII

GI
for GI > 0. The extended energetic fracture-

mode-mixity angle w is defined by (see [8]):

tanw ¼
ffiffiffiffiffiffiffi
n�1

q
tanwr ¼

ffiffiffi
n

p
tanwu; ð2Þ

where n ¼ kt=kn, tanwr ¼ s=r and tanwu ¼ dt=dn, wr and wu being
the stress and relative displacement based fracture-mode-mixity
angles, respectively. The ERR of the linear elastic interface at a point
x is defined as, cf. [8,18–21]: GðxÞ ¼ GIðxÞ þ GIIðxÞ, with

GIðxÞ ¼ rðxÞhdnðxÞiþ
2

; GIIðxÞ ¼ sðxÞdtðxÞ
2

; ð3Þ

verifying GI ¼ 0 for dn 6 0. The functional dependence of Gc on the
fracture-mode-mixity angle w is defined as in [37] with a slight
modification [8] as follows,

Gc ¼ GIc½1þ tan2ðð1� kÞwÞ�; ð4Þ
where

GIc ¼
�rc
�dnc
2

¼ �r2
c

2kn
¼ kn�d2nc

2
ð5Þ

corresponds to the fracture energy in pure opening mode I. k is a
fracture-mode-sensitivity parameter (usually obtained from the
best fit from experimental results), �rc > 0 and �dnc > 0 are the
critical normal component of traction and critical normal relative
displacement in mode I, i.e. �rc ¼ kn�dnc ¼ rcðw ¼ 0Þ and �dnc ¼
dncðw ¼ 0Þ.

In summary, it can be seen that the LEBIM needs the input of
four independent variables: �rc;GIc; n and k. Typical range
0:2 6 k 6 0:3 characterises interfaces with moderately strong
fracture-mode-dependence [37]. Further details on the deduction
of the above criterion are presented in [7,8,15,36].

3. Description of the problem

When an actual continuous fibre-reinforced composite is
intended to be modelled, several options exist. The most common
ones are the following: (i) application of periodic boundary condi-
tions for a bundle of fibres embedded in a matrix cell whose exter-
nal dimensions are given by the bundle size, (ii) homogenised
composite surrounding the bundle of fibres embedded in a matrix

1 The positive and negative part of a real number d are defined in the present study
as hdi� ¼ 1

2 d� jdjð Þ. h�iþ is also referred to as Macaulay brackets or ramp function.
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