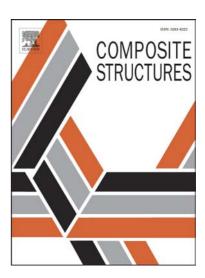
Accepted Manuscript

Free vibration analysis of rotating functionally graded rectangular plates


L. Li, D.G. Zhang

PII: S0263-8223(15)00944-7

DOI: http://dx.doi.org/10.1016/j.compstruct.2015.10.013

Reference: COST 6921

To appear in: Composite Structures

Please cite this article as: Li, L., Zhang, D.G., Free vibration analysis of rotating functionally graded rectangular plates, *Composite Structures* (2015), doi: http://dx.doi.org/10.1016/j.compstruct.2015.10.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Free vibration analysis of rotating functionally graded rectangular plates

L. Li^a, D.G. Zhang^{a,*}

^aSchool of Sciences, Nanjing University of Science and Technology, Nanjing 210094, P.R. China

*Corresponding author. Tel.: 0086-25-84315185. Fax number: 0086-25-84432747. E-mail address:

zhangdg419@mail.njust.edu.cn

Abstract: A dynamic model of a functionally graded rectangular plate undergoing large overall motions is presented in this paper. The material properties of the FGM plate are assumed to vary

continuously in its thickness direction according to a power-law distribution. The dynamic model with

the dynamic stiffening effect included is used to study the free vibration characteristics of various kinds

of rotating cantilever rectangular FGM plates. Simulations results from the present dynamic equations

are verified to have higher accuracy than those from the previous method in literature, which induces

different frequency variation phenomena for the same case. Phenomena of frequency loci veering

rather than crossing can be observed in either rotating homogeneous plates or rotating FGM plates.

Complicated frequency loci veering and associated mode shift phenomena occur in a rotating

hub-FGM plate system, where a frequency locus may veer more than once due to different types of

modal coupling between the bending and torsional vibrations of the FGM plate. The effects of

dimensionless parameters such as the hub radius ratio, the aspect ratio, and the volume fraction

exponent on the variations of the natural frequencies of rotating FGM plates are also investigated.

Keywords: Rotating FGM plates, free vibration, frequency loci veering, mode shapes

1. Introduction

Functionally graded materials (FGMs) are one kind of advanced materials usually made from a mixture of metal and ceramic constituents with continuous changes in the composition of them. The concept of FGMs was proposed in 1984 by materials scientists in the Sendai area as a means of preparing thermal barrier materials [1]. In recent years, FGMs are widely used in aerospace engineering and mechanical structures and have gained widespread attention of mechanics researchers due to their excellent thermo-mechanical advantages over traditional composites.

The dynamic modeling and analysis of rotating blades made of FGMs have been studied extensively over the last decade. Most studies involving blades made of FGMs are devoted to beams. Birman and Byrd [2] presented a review of the principal developments in FGMs with an emphasis on the recent work published since 2000. They reviewed the works on functionally graded material blades

Download English Version:

https://daneshyari.com/en/article/6706399

Download Persian Version:

https://daneshyari.com/article/6706399

<u>Daneshyari.com</u>