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a b s t r a c t

We discuss boundary layers arising in the high Weissenberg number limit of viscoelastic flows and the
scalings that arise in analyzing them. Two quite distinct mechanisms for the formation of viscoelastic
boundary layers exist: One mechanism is analogous to that of the Prandtl boundary layer and is linked
to the enforcement of the no-slip boundary condition. The other mechanism has nothing to do with
the no-slip condition, but is linked to long memory which manifests itself in different stresses near the
wall versus some distance from the wall. In certain situations, these stress boundary layers may be
embedded within Prandtl type boundary layers.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The theory of viscous boundary layers in Newtonian fluids was
developed by Prandtl [11] more than a century ago. Formally, the
Navier–Stokes equations reduce to the Euler equations when the
Reynolds number becomes infinite. However, the Euler equations
do not allow the imposition of the no-slip boundary condition.

In his fundamental work [11], Prandtl made the conjecture that
for many high Reynolds number flows, the Euler equations provide
an adequate description except in a thin layer close to the
boundary. By scaling analysis, he established a system of governing
equations for this boundary layer, which are called Prandtl’s
equations.

Despite of the fact that many important applications can be
based on the solution of Prandtl’s system, its mathematical analy-
sis is far from an easy problem. Oleinik and Samokhin [10] estab-
lished a well-posedness result under the assumption that the
velocity profile in the boundary layer is monotone. Sammartino
and Caflisch [20] established an existence result for analytic initial
data. We also refer to the review article of E [2] for further work
prior to 2000. Recently, Gérard-Varet and Dormy [4] established
that, for general initial data, the Prandtl equations are not well-
posed in Sobolev spaces if the velocity profile is non-monotone.
This result builds on a shear flow instability which was analyzed
by Cowley et al. [1].

In this paper, we are concerned with viscoelastic flows gov-
erned by the upper convected Maxwell model. The high Weiss-
enberg number limit of the equations governing this fluid can

formally be reduced to a system of equations which is similar to
ideal magnetohydrodynamics [9]. The well-posedness of this sys-
tem was analyzed in [21]. Like the Euler equations, this limiting
system allows only the imposition of the non-penetration condi-
tion, but not no-slip. As a result, a boundary layer forms, which
is analogous to Prandtl’s. In contrast to the Prandtl equations, the
boundary layer equations for this situation were found to be
well-posed [19].

Boundary layers like Prandtl’s can arise in the time evolution of
a flow or in ‘‘developing’’ flows like the well known Blasius solu-
tion for flow past an obstacle. Here, the boundary layer grows in
thickness along the obstacle. However, it is counterintuitive to
expect a sharp transition in velocity at a stationary boundary to
persist in a fully developed steady flow. There is, however, an
entirely different mechanism which leads to boundary layers in
steady viscoelastic flows. In these flows, the velocity vanishes at
the wall, even in the outer flow solution. High Weissenberg num-
ber means long relaxation time. Particles away from the wall
therefore travel long distances within a relaxation time. On the
other hand, particles close to the wall travel only a short distance.
This leads to boundary layers in the stress.

Boundary layers of this latter type were analyzed in [14,16,17].
They play an essential role in the analysis of corner singularities
[5,13,12,3], and they have long been observed in numerical simu-
lations of steady viscoelastic flows [6,7].

The objective of this paper is to give an overview over the
‘‘zoo’’ of boundary layers that can arise in viscoelastic flows and
discuss the mechanisms and scalings behind them. In Section 2,
we discuss unsteady flows and boundary layers of the Prandtl
type, which are due to a failure of the no-slip condition in the
outer flow. In Section 3, we discuss the case of steady flow. We
show why Prandtl type boundary layers on a stationary boundary
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cannot in general exist in a fully developed flow. We then discuss
stress boundary layers and the possibility of having such stress
boundary layers embedded as sublayers of a Prandtl boundary
layer.

We consider the upper convected Maxwell model:

q
@v
@t
þ ðv � rÞv

� �
¼ r � T�rp;

r � v ¼ 0;

s
@T
@t
þ ðv � rÞT� ðrvÞT� TðrvÞT

� �
þ T ¼ gðrv þ ðrvÞTÞ;

ð1Þ

where v, T, p are velocity, stress and isotropic pressure while q, s, g
are the density, relaxation time and viscosity.

Assuming typical scales L;U; L
U ;

gU
L for length, velocity, time and

stress, we have the dimensionless system

@v
@t
þ ðv � rÞv ¼ 1

Re
r � T�rp;

r � v ¼ 0;

@T
@t
þ ðv � rÞT� ðrvÞT� TðrvÞT þ 1

Wi
T ¼ 1

Wi
ðrv þ ðrvÞTÞ;

ð2Þ

where Re = qUL/g is the Reynolds number and Wi = sU/L is the
Weissenberg number.

2. Boundary layers in unsteady flows

2.1. Outer problem

When the Weissenberg number Wi approaches infinity, a
limiting set of equations arises which is analogous to the Euler
equations in Newtonian flow. We note that, in the limit Wi =1,
the constitutive equation in (2) becomes invariant under a scaling
of stresses. In a fully developed steady flow, we would expect
viscometric flow at the wall, which leads to stresses of order
Wi. It would therefore be reasonable to expect stresses of a sim-
ilar magnitude away from the wall as well. However, in this sec-
tion we are concerned with an initial value problem. We note that
for large Wi the time that is needed for stresses to reach their
ultimate values is large of order Wi. We shall therefore make no
specific assumption on the magnitude of the initial stresses, and
introduce a new dimensionless parameter which measures this
magnitude. We call this parameter the Deborah number De. In
other words, De is the typical magnitude of the initial stresses
relative to gU/L.

We now scale the stresses with an additional factor De, to
obtain

@v
@t
þ ðv � rÞv ¼ De

Re
r � T�rp;

r � v ¼ 0;

@T
@t
þ ðv � rÞT� ðrvÞT� TðrvÞT þ 1

Wi
T ¼ 1

DeWi
ðrv þ ðrvÞTÞ:

ð3Þ

The elasticity number E ¼ De
Re plays a key role. We consider the inte-

rior problem in three cases, E ¼ De
Re is of order one, E is small and E is

large.

2.1.1. E ¼ De
Re is of order one

In [21], we assume the elasticity constant E ¼ De
Re fixed with or-

der one. Formally setting Wi =1 above, we obtain the limiting
system

@v0

@t
þ ðv0 � rÞv0 ¼ Er � T0 �rp0;

@T0

@t
þ ðv0 � rÞT0 � ðrv0ÞT0 � T0ðrv0ÞT ¼ 0;

r � v0 ¼ 0:

ð4Þ

The mathematical well-posedness of this system was studied in
[21]. In doing so, we assume that T0 � n = 0 at the wall. The rationale
for this is that the flow at the wall is necessarily a shear flow, and
therefore we expect the stress to be dominated by the first normal
stress component if Wi is large. It can be shown that, indeed, the
condition T0 � n = 0 is preserved by the equations if it is satisfied
by the initial data. An important consequence of this condition on
the stress is that only the condition v0 � n = 0 can be imposed on
the equations, but not the no-slip condition. This situation is anal-
ogous to that of the Euler equations.

2.1.2. E ¼ De
Re is small

When E = 0 in (4), the momentum equations decouple from
the constitutive equations and become inviscid flow. Stress is
decoupled, and can be easily recovered from a linear transport
system.

2.1.3. E ¼ De
Re is large

When E becomes very large, we get a creeping flow,

r � T0 ¼ rp0;

r � v0 ¼ 0;

@T0

@t
þ ðv0 � rÞT0 � ðrv0ÞT0 � T0ðrv0ÞT ¼ 0:

ð5Þ

This creeping flow system does not lead to a well-posed initial value
problem. For instance, we obtain a solution if we set T0 = 0, and take
v0 to be a divergence free vector field with any time dependence
whatsoever. The problem is that, to get a well-posed system for
determining v0, we need T0 to be strictly positive definite. But we
cannot expect the leading contribution to the stress to be positive
definite in the limit of high Wi. For more discussion, see [18]. For
the rest of this section, we shall assume that E is at least of order
one.

2.2. Boundary layer

Above we discuss the interior region at infinite Weissenberg
number with boundary condition v � n = 0. For the equations with
finite Wi, however, we are forced to impose the boundary condi-
tion v = 0, not just v � n = 0. To accommodate this, boundary layers
must form near the wall. In analyzing these boundary layers, it is
convenient to set S = T + I/DeWi. With this substitution, the consti-
tutive law in (3) transforms to

@S
@t
þ ðv � rÞS� ðrvÞS� SðrvÞT þ 1

Wi
S� 1

DeWi
I

� �
¼ 0; ð6Þ

and we have div T = div S in the momentum equation. The change in
boundary conditions is related to the fact that, while S � n vanishes
on the boundary at leading order, for the full equations we have
strict positive definiteness of S.

Now we study how to formulate the boundary layer system. We

shall show that the boundary layer thickness is 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
WiRe
p

when Wi
is large. When Wi is small we recover the Prandtl system with a
viscous boundary layer of thickness 1=

ffiffiffiffiffiffi
Re
p

. For the formulation
of boundary layer equations, we shall assume that the domain of
flow is the half plane y > 0. This assumption is made only to sim-
plify the exposition; the boundary layer equations remain valid
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