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a b s t r a c t

This study intends to contribute with the improvement of FEM formulations to analyze composite mate-
rials and structures at the meso and macro levels. Specifically, composite materials and structures con-
stituted by an elastic matrix reinforced by long or short fibers that may debound when the contact
stress reaches a critical value are taken into account.

The study proposes a way to introduce fibers (short or long) inside elastic solids modeled by finite ele-
ments without increasing the number of degrees of freedom when debounding is not present. When
there is debounding, new degrees of freedom are incorporated only at the slipping contact between fibers
and matrix following an elastoplastic non-linear constitutive relation. The matrix is considered elastic
while fibers follow a multi-linear elastoplastic constitutive relation. Large deformations and moderate
strains are considered. In order to model the debounding between fibers and matrix it is necessary to
accurately calculate the contact stresses. Therefore, the development of straight and curved fiber ele-
ments of any order and the accuracy analysis of the proposed contact stress calculations are investigated.
After defining the best strategy to be followed general examples are solved to validate the contact stress
calculation, debounding and plastic fiber behavior.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials are designed to combine two or more
materials in order to take advantage of their better physical,
mechanical or economic properties. This kind of material is largely
employed in engineering solutions, from traditional applications as
the reinforced concrete to more recent ones as fiber-carbon com-
posites used in aeronautical industry.Regarding the combination
of mechanical (and economical) properties we may cite some sim-
ple composite materials. The reinforced concrete takes advantage
of the concrete low cost and its high compression strength and
the ductility and high strength in tension of steel. The reinforced
rubber takes advantage of the high deformability of rubber and
its vibration absorbing properties and the high strength and stiff-
ness of steel. In fiber-carbon composites the resin adherent proper-
ties are used together with the low weight, high strength and high
stiffness of carbon-fibers to constitute light and tough structures.

The mechanical analysis of fiber-reinforced composites falls in
three main levels: the macro-level, the meso-level and the

nano-level. The first is interested in the overall behavior of struc-
tural components. The meso-level deals with the interdependent
behavior of fiber and matrix, i.e. interfacial stress and debounding.
Finally the nano-level is interested in the nano-scale constitution
of fibers and matrix by themselves and in its influence at meso
and macro-levels.

In this study we are interested to contribute with the improve-
ment of FEM formulations to analyze composite materials and
structures at the meso and macro levels. Specifically, we are deal
with composite materials and structures constituted by an elastic
matrix reinforced by long or short elastoplastic fibers that may
debound when the contact stress reaches a critical value. Before
starting the description of our approach it is important to mention
reference [1], in which one finds an important review of the subject
and a specific formulation (different from ours) to model the
behavior of fiber reinforced composite and structures. Their formu-
lation considers elastic fibers embedded in a physical non-linear
matrix considering debounding,small strains and small deforma-
tions. Summarizing some points raised by [1] one can say that in
FEM literature different ways are developed to incorporate fibers
inside matrix domain. The reader is invited to consult the works
[1–6] where field enrichments are imposed inside the 2D domain
in order to model the fiber–matrix coupling. These enrichments

http://dx.doi.org/10.1016/j.compstruct.2015.07.097
0263-8223/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: rpaccola@sc.usp.br (R.R. Paccola), dpiedade@sc.usp.br

(D. Piedade Neto), hbcoda@sc.usp.br (H.B. Coda).

Composite Structures 133 (2015) 343–357

Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2015.07.097&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2015.07.097
mailto:rpaccola@sc.usp.br
mailto:dpiedade@sc.usp.br
mailto:hbcoda@sc.usp.br
http://dx.doi.org/10.1016/j.compstruct.2015.07.097
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct


are based on general known behavior of fiber–matrix connections.
They are mostly based on the so called Partition of Unity FEM [7–
12] leading to very elegant and well posed strategies; however the
pre-known enrichment field is of difficult achievement when, for
example, curved fibers are present. Readers are invited to consult
the works [13–15] in which authors employ lattice strategy to
model composites from micro-structural consideration.
Moreover, other approaches that adopt slip degrees of freedom
to represent the fiber reinforced body can be found in [16,17].
Works that employ the Boundary Element Method may also be
referred [18,19].

As mentioned above, in this paper we intend to collaborate in
meso and macro-level analysis of fiber reinforced solids modeled
by Finite Elements. We propose a way to introduce fibers (short
or long) inside elastic solids modeled by finite elements without
increasing the number of degrees of freedom when debounding
is not present. When there is debounding, new degrees of freedom
are incorporated only at the slipping contact between fibers and
matrix following a non linear constitutive relation. The matrix is
considered elastic while fibers follow a multi-linear elastoplastic
constitutive relation. Moreover large deformations and moderate
strains are considered.

In order to model the debounding between fibers and matrix it
is necessary to accurately calculate the contact stresses. Therefore,
we present the development of straight and curved fiber elements
of any order and analyze the accuracy of the proposed contact
stress calculations, defining the best strategy to be followed. A
comparison with an analytical contact stress solution [2,20,21] is
presented in order to validate the chosen strategy.

The 2D solid finite element applied here to discretize the con-
tinuum is isoparametric of any order [22,23]. The adopted nodal
parameters are positions, not displacements, which is adequate
to model curved elements and large deformations due to the nat-
ural presence of a numerical chain rule that solve space transfor-
mations. The formulation is classified as total Lagrangian and the
Saint-Venant–Kirchhoff constitutive law is chosen to model the
matrix material behavior [24,25]. Therefore, the Green strain and
the Second Piola–Kirchhoff stress are adopted.

Fiber elements are introduced in matrix by means of nodal
kinematic relations. This strategy directly ensures the adhesion
of fibers nodes to the matrix without increasing the number of
degrees of freedom, when debounding is not considered, and with-
out the need of nodal matching [26,27]. The debounding and fiber
non-linear relations are introduced allowing the degeneration of
fibers inside elastic bodies.

To solve the resulting geometrical nonlinear problem we adopt
the Principle of Stationary Total Potential Energy [28]. From this
principle we find the nonlinear equilibrium equations and use
the Newton–Raphson iterative procedure [29] to solve the nonlin-
ear system. External loads are considered conservative and incre-
mentally applied.

The paper is organized as follows. Section 2 describes the gen-
eral nonlinear solution process, indicating the important variables
that will be developed in subsequent sections. Section 3 describes
the elastic procedure used to model the two-dimensional contin-
uum (matrix). Section 4 presents the developed any order elastic
and elastoplastic fiber finite element and describes the chain rule
applied to generalize the inclusion of fibers into high order 2D solid
finite elements without increasing the number of degrees of free-
dom. Section 5 presents the proposed fiber–matrix contact stresses
calculations in elastic analysis and tests these strategies to choose
the best one to incorporate debounding. Section 6 shows how slip-
ping and debounding are considered and Section 7 presents
numerical examples comparing and analyzing the behavior of the
proposed formulation for general applications. Finally, conclusions
are presented in Section 8.

2. The general solution process

To solve the proposed fiber reinforced mechanical problem we
use the principle of stationary total potential energy. The problem
is assumed to be isothermal and external loads are considered con-
servative. Therefore, the total potential energy is written as:

P¼
Z

V f
0

hðE;aÞdV f
0þ
Z

Vb
0

Wðf;bÞdVb
0þ
Z

Vm
0

ueðEÞdVm
0 �

Z
S0

p �yds0�F �Y

ð1Þ

where h is the Helmholtz free energy potential of elastoplastic
internal fibers, W is the Helmholtz free energy potential of bound-
ing region, ue is the specific strain energy potential of the elastic
matrix, F is the concentrated external conservative load vector, Y
is the nodal position vector, including all degrees of freedom, p is
the conservative distributed load related to the surface position y.
Moreover, E is the uniaxial Green–Lagrange strain measured at
fibers, f is the relative dimensionless position of fiber and matrix
understood as the bounding slip, E is the Green–Lagrange strain
developed at the elastic matrix, a is the internal variable that con-
trols the plastic strain evolution of fibers and b is the internal vari-
able that controls the non-linear slipping between fibers and
matrix.

A variation of Eq. (1) is equal to zero at equilibrium position,
that is, the problem consists on finding a position Y that satisfies
the assumption:

dP ¼ 0 ð2Þ

As the main variable of the problem is Y we rewrite Eq. (2) as,
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In which / is the set of shape functions related to the surface of
elements and P is the nodal value of distributed applied forces. The
first, second and third terms of Eq. (3) are further developed,
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in which index and dyadic notations are used together.
And, by the energy conjugate assumption [25], one writes

@h
@E
¼ S

@W
@f
¼ q

@ue

@E
¼ S ð5Þ

in which S is the uniaxial second Piola–Kirchhoff stress developed at
the fiber, q is the contact distributed force between fiber and matrix
and S is the second Piola–Kirchhoff stress developed in the elastic
matrix. The internal variables related to the physical non-linear
constitutive relation for fibers and Bounding are omitted in Eqs.
(3)–(5) due to their intrinsic relation with E and f to be shown in
Sections 4 and 6, respectively.

Introducing Eq. (5) into (3) results:
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This equation is clearly nonlinear and the Newton–Raphson

solution process starts rewriting the equilibrium Eq. (6) by remov-
ing the arbitrary variation of positions dY and defining the unbal-
anced force vector g, as:
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