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a b s t r a c t

Carrera Unified Formulation (CUF) is used to perform flutter analyses of fixed and rotary wings. The
one-dimensional refined theories are obtained through an axiomatic enrichment of the displacement
field components by only setting the input parameters, namely the number of terms and the kind of
the cross-sectional functions. Within this work, Taylor-like expansions of N-order (TEN) are used. The
aerodynamic loadings are determined through the unsteady strip theories proposed by Theodorsen
and Loewy. The finite element method is used to solve the governing equations that are derived, in a
weak form, using the generalized Hamilton’s Principle. These equations are written in terms of CUF
‘‘fundamental nuclei’’, which do not vary with the theory order (N). The flutter instability of fixed and
rotary wings with rectangular and realistic cross-sections is investigated. The results are reported in
terms of flutter velocities and frequencies and, when possible, they are compared with experimental,
numerical and analytical solutions. Despite the intrinsic limitations of the used aerodynamic theories,
the proposed methodology appears valid for aeroelastic and vibrational analyses of several structures
by ensuring a significant accuracy with a low computational cost.

� 2015 Published by Elsevier Ltd.

1. Introduction

According to Collar’s definition, aeroelasticity is ‘‘the study of
the mutual interaction that takes place within the triangle of the
inertial, elastic, and aerodynamic forces acting on structural
members exposed to an air stream, and the influence of this study
on design’’. The fluid–structure interaction (FSI) has brought to
catastrophic events due to sudden failures of bridges, airplanes,
helicopter blades, etc. A correct and safe design must require,
therefore, an accurate prediction of aeroelastic phenomena.
Unfortunately, FSI analyses are, in most cases, too computationally
expensive; thus a tradeoff between accuracy and cost is often
necessary.

For fixed-wing configurations, the simplest aerodynamic
theories based on strip approaches were proposed in the first half
of the twentieth century [1–5]. These models were properly com-
bined with simplified structural theories to develop reliable aeroe-
lastic tools. For instance, aeroelastic analyses were performed on
wings [6–8] and civil structures [9] by using the beam-plate

approach. On the basis of this methodology, the flexural, torsional
and secondary stiffness of the cross-section are reduced to the
equivalent beam quantities (EI, GJ, K, etc.). To overcome the intrin-
sic limitations of this technique (no coupling due to the material
distribution), Librescu et al. proposed a refined 1D theory including
non-classical effects, such as warping and transverse shear defor-
mations and the non-uniform torsion [10–12]. Moreover, Patil
et al. developed a non-linear 1D formulation for laminated box
beams by adopting an asymptotic technique to compute the
cross-sectional mechanical properties [13,14]. Later, Palacios
et al. used the same formulation to evaluate the aeroelastic behav-
ior of highly flexible wings [15]. Nowadays, the rapid increase of
the computational power has motivated the development in the
area of computational fluid dynamics (CFD). Over the last 30 years,
the CFD-based aeroelasticity progressed from full potential theo-
ries (strip theory, panel methods) to problems governed by the
Navier–Stokes equations. Recent works offer interesting overviews
of CFD-aeroelastic tools [16,17] furthermore providing useful
information about the emerging trends in the aeroelasticity field
[18]. From a structural point of view, the CFD simulations can be
coupled with finite element models, in which non-linear elements
may be used to include either geometrical effects or large deforma-
tions. A detailed paper about non-linear structural models can be
found in [19].
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Regarding the aeroelasticity of rotary wings, the problem
becomes more complex due to the geometric nonlinearities that
must be taken into account in both elastic and aerodynamic terms.
This need has driven the development of suitable structural and
aerodynamic theories as confirmed by the considerable number
of articles available in the literature. Almost 50 years ago, Loewy
provided a thorough overview on a broad range of topics related
to the dynamics and aeroelasticity of rotary wings such as
flap-lag flutter, pitch-lag flutter and ground and air resonance
[20]. Although being more limited in scope, other contributions
to the study of classical flutter conditions and unsteady aerody-
namic theories were proposed in [21,22], respectively. In that per-
iod, the aerodynamic models for the instability predictions were
essentially extensions of steady and quasi-steady strip theories
conceived for fixed-wing configurations. The first important
unsteady approach for hover, based on Theodorsen’s model, was
proposed by Loewy [23]. Though in an approximate manner, this
theory takes into account the effect of the spiral returning wake
beneath the rotor. Other valuable models were proposed on the
basis of Greenberg’s theory [24], where a pulsating velocity varia-
tion and a constant pitch angle were included in Theodorsen’s
model. These modifications were extended to the case of rotary
wings in [25], in which Theodorsen’s, Loewy’s and Poisso’s theories
were used for studying the flap-lag-torsional coupling. The authors
pointed out that the above modifications should be included to
realistically reproduce the aeroelasticity of rotary wings, where
the assumptions commonly used in deriving strip theories
(1 – cross sections are assumed to perform only simple harmonic
pitching and plunging oscillations about a zero equilibrium posi-
tion; 2 – the velocity of oncoming airflow is constant; 3 – usual
potential small-disturbance unsteady aerodynamics are assumed
to apply) are intrinsically violated. The modified strip theory with
the quasi-steady approximation was adopted to study the stability
of composite helicopter blades with swept tips both in hover and
in forward flight [26]. The swept-tip blades were modeled using
non-linear 1D finite element with the inclusion of transverse shear
deformations and out-of-plane warping. These results were
recently used to verify the accuracy of a nonlinear structural for-
mulation valid for slender, homogeneous and twisted blades [27].
Other analyses on advanced geometry blades were carried out in
[28] with the purpose of evaluating the effects of sweep and droop
on both rotor aeroelastic stability and rotorcraft aero-mechanical
stability. The evolution of the mechanics of helicopter blades,
focusing on the aeroelastic and aerodynamic issues, was exten-
sively discussed in [29–32]. Moreover, even if the aeroelasticity
of large wind turbine blades is inherently different, several related
aeroelastic problems were solved using rotary wing theories
[33–35]. Furthermore, the response problems of an isolated wind
turbine blade and a complete rotor/tower configuration were
detailed discussed in [36–38].

Within this work, we propose an advanced 1D formulation to
predict the flutter conditions of various fixed and rotary wing con-
figurations. The higher-order beam theories are obtained using the
Carrera Unified Formulation (CUF), which enables to derive, at least
theoretically, an infinite number of models [39–41]. The
Taylor-type expansions (referred to as TE) represent a particular
class of the 1D-CUF theories. The TE models have been adopted
for the study of mechanical behaviors of thin-walled structures
[42,43] and non-conventional cross-sections made of isotropic,
composite [39,40] and functionally graded [41] materials. Other
encouraging results have also been obtained in the dynamics of
rotors by analyzing both blades [44] and spinning shafts [45–47].
Furthermore, aeroelastic analyzes were performed on fixed-wing
configurations by combining the TE elements with aerodynamic
panel methods [48,49] and unsteady strip theories [50].

2. The structural model: Carrera Unified Formulation

CUF states that the displacement field, uTðx; y; z; tÞ ¼ ðux;uy;uzÞT ,
is an expansion of generic functions, Fsðx; zÞ for the displacement
vector, usðyÞ:

uðx; y; z; tÞ ¼ Fsðx; zÞusðy; tÞ s ¼ 1;2; . . . ; T ð1Þ

where T is the number of terms in the expansion and, according to
Einstein’s generalized notation, s indicates summation. In this
work, Eq. (1) consists of Taylor-like expansions denoted as ‘TE’.
For example, the third-order displacement field (TE3) is:

ux ¼ ux1 þ x ux2 þ z ux3 þ x2 ux4 þ xz ux5 þ z2 ux6 þ x3 ux7

þ x2z ux8 þ xz2 ux9 þ z3 ux10

uy ¼ uy1
þ x uy2

þ z uy3
þ x2 uy4

þ xz uy5
þ z2 uy6

þ x3 uy7
þ x2z uy8

þ xz2 uy9
þ z3 uy10

uz ¼ uz1 þ x uz2 þ z uz3 þ x2 uz4 þ xz uz5 þ z2 uz6 þ x3 uz7

þ x2z uz8 þ xz2 uz9 þ z3 uz10

The remarkable feature of these models is that classical beam
theories can be obtained as particular cases of Taylor expansions.
Although, the capabilities of the TE approaches have been evaluated
in several works, we suggest referring to [51] for a detailed
description. The stresses and the strains are grouped as follows:

�p ¼ f�zz �xx �xzgT rp ¼ frzz rxx rxzgT

�n ¼ f�zy �xy �yygT rn ¼ frzy rxy ryygT
ð2Þ

where the subscript ‘‘p’’ stands for the terms lying on the
cross-section, while ‘‘n’’ stands for the terms lying on the other
planes, which are orthogonal to the cross-section. The strain–
displacement relations and Hooke’s law are, respectively:

�p ¼ Dpu
�n ¼ Dnu ¼ ðDnp þ DnyÞu

ð3Þ

rp ¼ ~Cpp�p þ ~Cpn�n

rn ¼ ~Cnp�p þ ~Cnn�n

ð4Þ

where Dp and Dn are linear differential operators. Both laminated
box beams and cylinders can be considered constituted by a certain
number of either straight or curved plates of orthotropic material,
whose material coordinate systems generally do not coincide with
the physical coordinate system (x,y,z) of the structure. The matrices
of material coefficients of the generic material k are

~Ck
pp ¼

~Ck
11

~Ck
12

~Ck
14

~Ck
12

~Ck
22

~Ck
24

~Ck
14

~Ck
24

~Ck
44

2
64

3
75; ~Ck

pn ¼

~Ck
15

~Ck
16

~Ck
13

~Ck
25

~Ck
26

~Ck
23

~Ck
45

~Ck
46

~Ck
43

2
64

3
75;

~Ck
nn ¼

~Ck
55

~Ck
56

~Ck
35

~Ck
56

~Ck
66

~Ck
36

~Ck
35

~Ck
36

~Ck
33

2
64

3
75 ð5Þ

For the sake of the brevity, the explicit forms of the coefficients of

the ~C matrices are shown in [46]. The finite element method is used
in order to consider arbitrary cross-section profiles. The generalized
displacement vector is

usðy; tÞ ¼ NiðyÞqsiðtÞ ð6Þ

where NiðyÞ are the shape functions and qsiðtÞ is the nodal displace-
ment vector

qsiðtÞ ¼ quxsi
quysi

quzsi

n oT
ð7Þ

382 M. Filippi, E. Carrera / Composite Structures 133 (2015) 381–389



Download English Version:

https://daneshyari.com/en/article/6706512

Download Persian Version:

https://daneshyari.com/article/6706512

Daneshyari.com

https://daneshyari.com/en/article/6706512
https://daneshyari.com/article/6706512
https://daneshyari.com

