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a b s t r a c t

A systematical method is presented to derive the state space equations of anisotropic
magneto-electro-elastic materials of orthogonal curvilinear coordinates in Hamiltonian system. Based
on the three-dimensional theory of magneto-electro-elasticity, the constitutive relations and the
Lagrangian function of the total potential are rewritten in terms of the generalized displacements, i.e.,
displacements, electric potential and magnetic potential, and their derivatives. The Legendre transform
is then applied to release the Hamiltonian function and the canonical equations are obtained through
variational operation. The canonical equations in curvilinear coordinates, i.e., the desired state equations,
can be degenerated readily to the ones of spherical coordinates, cylindrical coordinates and rectangular
coordinates. These equations are also deduced conveniently for piezoelectric and elastic materials since
these derivation are rendered in terms of matrix. As an example of application, a magneto-electro-elastic
cylindrical shell with four simply supported edges is studied when it is bended by sinusoidal load.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The state space method could be traced back to the initial func-
tion method by Vlasov in 1950s [1,2], in which three displacement
components and three stress components were chosen as state
vector functions and combined in one mixed equation set includ-
ing displacements and stresses. These state vectors were expanded
in terms of the Maclaurin series along a specific coordinate and the
boundary value problems of the elasticity became the initial prob-
lems with respect to the specific coordinate. Some approximate
theories of beams and plates of various orders could be obtained
systematically by cutting the infinite series of Maclaurin to the
desired order. Lur’e [3] also adopted similar symbolic operators
to solve three-dimensional problems in the theory of elasticity.
The method of symbolic operators were extended for dynamic
problems in two-dimension by Das and Setlur [4] and further for
orthogonal anisotropic materials by Xu and Ding [5]. Rao and Das
[6] used this method to study the dynamic behavior of thick plates
of isotropic materials and got the solution of a rectangular plate
with four simply supported edges. The Navier solution of the rect-
angular plate with four simply supported edges and the Levy solu-
tion of the rectangular plate with two simply supported opposite

edges were given by Iyengar et al. [7]. Although the method of
symbolic operator from Vlasov [1,2] and Lur’e [3] showed the ver-
satility in the derivation of approximate theories, they were lim-
ited in theories of beams and plates and few applications in the
theory of elasticity because it was difficult to identify the differen-
tial operator in terms of infinite series to an elementary function in
closed form, especially for non-Cartesian coordinates. For this pur-
pose, Bahar [8] introduced the concept of state space in modern
control theory and the theorem of Cayley–Hamilton to avoid the
differential equation in the form of infinite series and to be suitable
for non-Cartesian coordinates. This method was used by Stroh [9]
and Ingebrigtsen and Tonning [10] to investigate the wave motions
of anisotropy. It was also used by Celep [11] to study the free
axisymmetric vibration of isotropic circular plates and that of
transversely isotropic circular plates by Fan and Ye [12].
Unfortunately, these solutions involved some fatal errors in mis-
usage of Bessel functions to describe the distribution of the dis-
placements and stresses in the radial direction of the circular
plates, which was found by Ding et al. [13]. They also corrected
these errors and extended the method to the axisymmetric bend-
ing and free vibration of piezoelectric circular plates. The state
space method was also used by Fan and Ye [14] to investigate
the bending and free vibration of orthogonal laminated rectangular
plates based on three-dimensional theory of elasticity. The cases of
cylindrical shells and doubly curved shells were also presented by
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Fan and Zhang [15,16] through the same method. In 1990s, electric
components made by piezoelectric materials were developed
rapidly and attracted more attentions of researchers. The
electromechanical coupling effect of piezoelectric materials and
structures was the key property and was study by the state space
method [17–21]. In the new century, the state space method was
applied widely in the plates and shells of functionally graded
materials (FGMs) [22–25], on which many research focused at that
time. With the gradual development of the state space method,
some extensions in different aspects were made. For examples,
Ding et al. [26] derived the state space equations of displacement
functions and stress functions [26]. Chen and co-worker [27–31]
introduced the spring models of imperfect interfaces into the state
space method to illustrate the effect of the imperfect interfaces on
the laminated plates and shells. The differential quadrature
method (DQM) was also combined with the state space method
to deal with those non-simply supported edges [32–34] as well
as the interaction between the structures and fluid [35].
Recently, Chen [36] established a theoretical framework of surface
elasticity based on the state space method and symbolical
operator. The above-mentioned researches showed that the state
space method became versatile in theory of elasticity and was
widely applied in many structures such as rectangular plates,
circular plates, cylindrical shells and doubly curved shells of
isotropic, anisotropic, functionally graded, piezoelectric and
magneto-electro-thermo-elastic materials in dynamic or static
states. The derivation of the state equations was the key procedure

in the state space method. The state equations were usually
obtained from the equations of equilibrium and constitutive rela-
tions through the appropriate choices of the state variables in the
specific coordinates for the specific problems. Some tedious elimi-
nation was also necessary in the derivation. Unlike the traditional
methods in the theory of elasticity involving displacements or
stresses only, the state space method included both displacements
and stresses and it was of great advantage in many problems,
especially in laminated structures. However, it remained the idea
of the traditional semi-inverse method to solve specific problems
in the theory of elasticity.

At the same time of the development of the state space method,
Zhong [37] presented a new systematical method to solve the
problems of elasticity, which was named as symplectic elasticity.
This method was inspired by the dual Hamiltonian system in the
classical mechanics. The Lagrangian function of the principle of
total potential of elasticity was transformed by Legendre transform
into Hamiltonian function and the dualities of the displacements
were then obtained rationally as well as the corresponding canon-
ical equations, which was the desired state equations in
Hamiltonian system. These earlier researches were mostly pub-
lished in Chinese and then they were reviewed and introduced into
the international world by Lim and Xu [38]. Steel and Kim [39] also
obtained the state equations of revolving shells based on the mod-
ified variational principle of Hellinger–Reissner. Unlike the original
state space method, the state equations in Hamiltonian system
could be obtained systematically from the canonical equation of
Hamiltonian system as well as the dualities of the displacements,

Table 1
Values of the parameters ½a� and ½b�.

a; b ½a�; ½b�

n [1,6,5,7,10]
g [6,2,4,8,11]
f [5,4,3,9,12]

Table 2
Parameters ½a� and ½b� for piezoelectricity.

a; b ½a�; ½b�

n [1,6,5,7]
g [6,2,4,8]
f [5,4,3,9]

Table 3
Parameters ½a� and ½b� for elasticity.

a; b ½a�; ½b�

n [1,6,5]
g [6,2,4]
f [5,4,3]

O

r

zθ
θ0

r0 r1

l

Fig. 1. Geometry of the circular cylindrical panel and the coordinates system.

Table 4
Properties of magneto-electro-elastic material.

Properties BaTiO3–CoFe2O4 composite

Elastic (GPa) c11 ¼ c22 ¼ 274, c12 ¼ 163, c13 ¼ c23 ¼ 161,
c33 ¼ 259
c44 ¼ c55 ¼ 45, c66 ¼ ðc11 � c12Þ=2

Dielectric (10�10 C2/
Nm2)

e11 ¼ e22 ¼ 11:9, e33 ¼ 13:4

Magnetic (10�6 Ns2/C2) l11 ¼ l22 ¼ 531:5, l33 ¼ 142:3

Piezo-electric (C/m2) e15 ¼ e24 ¼ 1:16, e31 ¼ e32 ¼ �0:44, e33 ¼ 1:86
Piezo-magnetic (N/Am) d15 ¼ d24 ¼ 495:0, d31 ¼ d32 ¼ 522:3, d33 ¼ 629:7
Magneto-electric g11 ¼ g22 ¼ g33 ¼ 0 Fig. 2. Convergency of the layer-wise model.
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