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a b s t r a c t

In this article, a method and an algorithm are developed by which the effective mechanical properties of
rubber-cord composites are numerically estimated, with the finite strains and low compressibility of rub-
ber accounted for. The effective properties are derived in the form of a quadratic relation between the
Green deformation tensor and the second Piola–Kirchhoff stress tensor. Numerical results obtained using
implementation of this algorithm show good agreement with analytical formulas. The results of the
numerical estimation of the effective mechanical properties of rubber-cord composite under finite strains
are given in the article. The numerical analysis is carried out using the finite element method.
Dependences of the effective modules on the elastic properties of cord and rubber and on the cord pitch
are investigated for single-layer rubber-cord. Dependences of the effective modules on the cord angle are
investigated for two-layer rubber-cord. Graphs of these dependences are given in the article.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Rubber-cord composite is rubberized layers of cord fibers. Used
primarily in the tire industry, rubber cord is used to make the car-
cass and breaker in the production of pneumatic.

In the numerical strength analysis of a tire’s stress–strain state
as a solid construction, it is important to compute the maximum
stresses in rubber between cord fibers with sufficiently high accu-
racy. The lifetime of a tire depends on these stresses, and this
dependence is substantially nonlinear: a 5% change in maximum
stress can cause a one-and-a-half change in resource. The modeling
of each cord fiber is necessary for the exact calculation of maxi-
mum stresses in rubber; however, it is only relevant in a region
of maximum stress, which is usually the tire’s contact patch with
the road.

It is not necessary to model the rubber and cord separately in
the other parts of a tire. Moreover, the modeling of each cord fiber
is a waste of computing resources, because the typical tire size is
about a meter and the typical cord-fiber diameter is about a mil-
limeter. Thus, it is reasonable to model the rubber-cord composite
outside of the areas of stress concentration on the rubber by a solid

material in which mechanical behavior corresponds, on average, to
the initial composite. This material is called effective material and
its mechanical properties are called effective properties. In this
study, we pose a question: How do we estimate the numerically
effective mechanical properties of rubber cord if the geometry
and mechanical properties of the rubber and cord and known?.

Averaging the mechanical properties of inhomogeneous materi-
als has interested scientists since the middle of the last century.
The concept of the representative volume element (RVE) and the-
oretical principles of such averaging are described in [10]. The
effective properties of composites have been studied in previous
articles in a linear form, which is suitable for modeling the behav-
ior of composites under small strains.

Hashin–Shtrikman bounds [8,9] are valid for two-phase com-
posites with a relatively small volume content of filler in the
matrix. These bounds give the minimum and maximum values
for a composite’s bulk modulus and shear modulus by a known
concentration of the filler, the filler modules, and the matrix. The
Mori–Tanaka method [18] is the application of Hashin–
Shtrikman bounds to a well-ordered particulate composite with
isotropic spherical solid inclusions in a discontinuous matrix.
Analytical formulas for the estimation of effective elastic proper-
ties of a particulate fiber and layered composites are given in [5].
In that paper, plastic and viscoelastic effects and effective thermal
properties of composites are also considered.
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Currently, the more important problem is the estimation of
effective mechanical properties for inhomogeneous materials in a
nonlinear form, which is suitable for modeling composite behavior
under finite strains. Elastic and plastic properties of a material
containing distributed microvoids with different orientations are
studied in [4]. Effective elastic properties of solids with cavities
of various shapes and orientations are estimated in [25,26]. The
finite element method (FEM) is used in [22] for deriving effective
viscoelastic constitutive equations; it is assumed that a material
has periodic structure. The 2D problem of theory of elasticity for
RVE is solved using FEM and the results are then averaged. The
application of a variational principle to estimate the effective prop-
erties of a multicomponent composite in the form of strain-energy
density is described in [19,20]. An estimation method of the com-
posite effective properties in a nonlinear form on the basis of the
Hashin–Shtrikman [8,9] principle is given in [23]. A method of
deriving nonlinear thermoviscoelastic effective properties for peri-
odical composites with a rubber-like matrix is described in [1]. The
application of probability-theory methods for the estimation of
effective mechanical properties of irregular composites is given
in [11]. A method suitable for the estimation both of elastic and
conductive properties of particulate materials is given in [12]. In
this article, the authors investigate the influence of different
parameters of reinforcing particles on effective elastic and conduc-
tive properties. The averaging of elastic properties of inhomoge-
neous material in [7] is carried out by nonperiodical boundary
conditions and taking geometric nonlinearity into account.
Practical implementation is carried out using FEM (in the case of
2D). This approach is extended to a multiscale case in [6]. Some
methods of homogenization of linear viscoelastic and nonlinear
viscoplastic composites are compared in [17]. Effective properties
and microcracking in textile composites are represented in [24]
using FEM. Some effective modules (bending stiffness and lateral
compression stiffness) of rubber-cord layer are derived in [21].

Calculating the rubber-cord effective properties is a problem
that involves some peculiarities. The rubber-cord is an anisotropic
reinforced material involving rubber, a weakly compressible and
highly elastic material. Modules of elasticity of rubber and cord
can vary by 3–4 orders of magnitude [2]. These rubber-cord prop-
erties can cause difficulties in analyzing its stress–strain state,
which is necessary for the estimation of effective properties.

In this article, we propose an approach to deriving effective
properties of composites under finite strains. The basic principles
underlying this approach are the following [3,13–15,29]. The
representative volume element (RVE) in the form of a rectangular
parallelepiped is allocated in the undeformed-configuration
composite. An effective material is a homogeneous material that
satisfies the following condition. If we fill the RVE with this homo-
geneous material and the same RVE with source composite, then
the averaged stresses over the volume in source composite and
the homogeneous effective material will be equal for the equal
displacements of bounds. Constitutive equations for an effective
material are derived in the form of a quadratic relation between
the Green deformation tensor and the second Piola–Kirchhoff stress
tensor. For calculating the coefficients of this relation we solve
several sets of boundary value problems for the RVE with assigned
boundary displacements. The method of boundary-condition
formation for these task sets is proposed in this article, which takes
the low compressibility of rubber into account.

The results of the analysis of the effective characteristics of
rubber-cord material are derived using the developed program
module. The mechanical properties of cord in the calculation are
modeled using the Murnaghan potential [16]. The mechanical
properties of rubber are modeled using the Mooney–Rivlin poten-
tial [16] modified in order to take low compressibility of rubber
into account. The dependences of the effective modules of the

single-layer rubber-cord on the elastic properties of cord and rub-
ber and on the cord pitch are studied. The dependences of the
effective modules on the cord angle are studied for two-layer
rubber-cord.

2. Algorithm for analysis of the effective mechanical properties
of rubber-cord composite

Let us consider the basic notations that will be used in the
description of the algorithm for the analysis of the effective prop-
erties of rubber cord.

R
0
;R

the radius-vector of a particle in the
initial and current states;

u ¼ R� R
0 the displacement vector;

ni the material coordinates of a particle;

xi the spatial coordinates of a particle;

ei the basic vectors of coordinate
system;
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the gradient operators in the initial
and current states;
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the deformation gradient;
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the Green strain tensor;

E¼1
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the Almansi strain tensor;

G ¼ F� � F the Cauchy-Green deformation tensor;
⁄ the symbol of transposition;
: the symbol of double scalar

convolution;
r the true stress tensor;
P ¼ ðdet FÞF�1 � r the first Piola–Kirchhoff stress tensor;

S
0
¼ ðdet FÞF�1 � r � F��1 the second Piola–Kirchhoff stress

tensor;
V0;V the volume of the RVE in the initial

and current states;
C0;C bound of the RVE in the initial and

current states;

N
0
;N

bound normal in the initial and
current states.

As stated above, an effective material is a homogeneous mate-
rial that satisfies the following conditions. If we fill the RVE with
this homogeneous material and fill the same RVE with source
rubber-cord composite, then the averaged stresses over the vol-
ume in source composite and the homogeneous effective material
will be equal for equal displacements of bounds. The effective
properties are the mechanical properties of this material [13,14].

We will describe the algorithm of the estimation of the effective
characteristics of the rubber-cord material, using the above
notations.
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