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a b s t r a c t

In this paper we present a finite difference MAC-type approach for solving three-dimensional viscoelastic
incompressible free surface flows governed by the eXtended Pom–Pom (XPP) model, considering a wide
range of parameters. The numerical formulation presented in this work is an extension to three-dimen-
sions of our implicit technique [Journal of Non-Newtonian Fluid Mechanics 166 (2011) 165–179] for solv-
ing two-dimensional viscoelastic free surface flows. To enhance the stability of the numerical method, we
employ a combination of the projection method with an implicit technique for treating the pressure on
the free surfaces. The differential constitutive equation of the fluid is solved using a second-order Runge–
Kutta scheme. The numerical technique is validated by performing a mesh refinement study on a pipe
flow, and the numerical results presented include the simulation of two complex viscoelastic free surface
flows: extrudate-swell problem and jet buckling phenomenon.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Viscoelastic fluid flows are common in many important indus-
trial applications. The need to understand how these flows are pro-
cessed is of economic and technological interest.

Over the last decades, differential and integral constitutive
equations have been widely used to predict complex flows of poly-
mer solutions and melts (e.g. [1–6]). A good overview of different
types of constitutive equations describing viscoelastic fluids can
be found in several books, as in [7,8] for example.

An important step in the development of a physically realistic
and accurate constitutive equation to describe the flow of polymer
melts was made recently with the development of the Pom–Pom
model [9]. We note, however, that the Pom–Pom model shares
many features with the Phan-Thien–Tanner (PTT) model, as shown
in [10]. A similar feature is shared by other constitutive models, as
shown by Oliveira [11].

An improvement of the original Pom–Pom model is the eX-
tended Pom–Pom (XPP) formulation, proposed by Verbeeten
et al. [12] and Clemeur et al. [13]. Other variants have also been
proposed such as the SIPP (Single Improved Pom–Pom), the DIPP
(Double Improved Pom–Pom), the SXPP (Single eXtended

Pom–Pom), the DXPP (Double eXtended Pom–Pom), the k2XPP,
the mXPP (modified eXtended Pom–Pom), and the Semi-Linear
SXPP. Numerical solution for this type of constitutive equations
has taken much effort by several research groups (e.g. [14–20]),
and more recently in [21,22].

All the works described above deal with two-dimensional (2-D)
flows. One of the first works reported on the literature concerning
the numerical simulation of XPP model for three dimensional (3-D)
flows was presented by Sirakov et al. [23]. Using a finite element
method, the authors investigated the polymer flow in a contraction
geometry, and compared the numerical predictions with experi-
mental results. Dressler and Edwards [24] analysed the flow of a
Pom–Pom fluid in a tube while Khorsand et al. [25] developed a fi-
nite volume method to investigate the single-equation XPP fluid
flow in a pipe. More recently, Tenchev et al. [26] investigated the
3-D flow of a XPP fluid past a cylinder and in a contraction geom-
etry using the finite element method.

An additional difficulty appears when the viscoelastic fluid flow
involves free surfaces, since an efficient technique to represent the
interface with an accurate method for solving the constitutive
equations needs to be combined in the numerical simulation. For
simulations involving the K-BKZ integral model, one interesting
work that deals with free surface flow was presented by Román
Marín and Rasmussen [27] who solved the filament stretching be-
tween two plates (see also [28]) with third order accuracy in space
and time, and analysed the growth of non-axisymmetric distur-
bances on the free surface. For the extended Pom–Pom constitutive
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equation, Baltussen et al. [29] and Bogaerds et al. [30] examined
numerically the stability of the fountain flow, a typical free surface
simulation with relevance on injection molding.

The die-swell (or extrudate-swell) phenomenon is a common
benchmark flow problem in computational rheology that involves
free surfaces. One of the earliest 3-D free surface viscoelastic com-
putation was presented by Tran-Cong and Phan-Thien [31]. In that
pioneer work, the authors employed a boundary element method
to design extrusion dies using the Upper-Convected Maxwell
(UCM) model. Recently, a number of works analysed the behavior
of XPP fluids for this flow problem. In two-dimensions, Russo and
Phillips [32] presented a spectral method to simulate the extru-
date-swell, while Oishi et al. [33] developed a finite difference
scheme to study the influence of the XPP model parameters on
the extrudate swell ratio. For the three-dimensional case, there
are less works that analyse the extrudate-swell problem. For in-
stance, Debbaut and Marchal [34] numerically modeled this prob-
lem using the POLYFLOW commercial software, while Aloku and
Yuan [35] simulated the double convected Pom–Pom model on a
foaming process in extrusion flow. A recent study of axisymmetric
extrudate swell for the XPP model using an Arbitrary Lagrangian
Eulerian (ALE) finite element formulation was presented by Ganvir
et al. [36], showing good agreement with experimental results.

The development of accurate methods for solving moving free
surface flows of viscoelastic fluids is still challenging. This fact
has motivated the work of some researchers on computational rhe-
ology, and important insights have been obtained over the years. In
particular, for the XPP model we highlight the following works:
Yang et al. [37] simulated the mold filling process combining a le-
vel set method and the finite volume method on a non-staggered
grid; Jiang et al. [38] studied the impact of liquid droplets on solid
surfaces using an improved Smoothed Particle Hydrodynamics
method; Qiang et al. [39] analysed the gas-assisted injection mold-
ing process using Level Set/SIMPLEC methods; more recently, Li
et al. [40] simulated the full three-dimensional packing process
in injection molding.

Despite these important developments, in the context of the
Marker-And-Cell (MAC) approach, using finite differences and
staggered grids, numerical predictions for 3D moving free surface
flows of branched polymers have received relatively little attention
and, to our best knowledge, this is the first work to address this
problem for the XPP model. Within this context, this paper pre-
sents a numerical method to simulate complex 3-D free surface
flows. The numerical technique implemented in this work is an ori-
ginal extension to 3-D flows of the implicit method developed for
viscoelastic flows, which is described in detail in [33].

2. Mathematical model

Incompressible isothermal viscoelastic flows are governed by a
system of partial differential equations consisting of the equations
of momentum and mass conservation, coupled with a constitutive
equation for the extra-stress tensor. The differential constitutive
equation used in this work is based on the single mode XPP model
(details presented in [12]). Mass conservation and momentum
equations can be expressed in dimensionless form respectively by

r � u ¼ 0; ð1Þ
@u
@t
þr � ðuuÞ ¼ �rpþ b

Re
r2uþr � sþ 1

Fr2 g; ð2Þ

where u is the velocity vector field, p is the pressure, s is the poly-
meric contribution to the extra-stress tensor, and g is the gravita-
tional field.

In this work, we use the XPP model which is given by
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r
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Re We
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where f(k,s) and k are given by
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In these equations, the Reynolds number Re, the solvent viscos-
ity ratio parameter b, the Weissenberg number We, the c parame-
ter, the Q parameter and the Froude number Fr are defined by

Re ¼ qUL
l

; b ¼ lS

l
; We ¼ k1U

L
; c ¼ k2

k1
; Q ¼ 2

Q 0
;

Fr ¼ Uffiffiffiffiffi
gL

p ; ð6Þ

where k1 and k2 are the orientation and backbone stretch relaxation
times, q is the fluid density, l = lS + lP (with lS and lP representing
the solvent viscosity and polymeric viscosity coefficient, respec-
tively) is the zero shear rate viscosity, Q is the number of arms at
the extremity of the Pom–Pom molecule and the a parameter con-
trols the anisotropic drag [22]. In addition, L, U and g are length,
velocity and gravity characteristic scales, respectively.

The upper-convected derivative of tensor s in (3) is defined by

s
r
¼ @s
@t
þr � ðusÞ � ðruÞ � s� s � ðruÞT ; ð7Þ

while the rate-of-deformation tensor D is given by

D ¼ 1
2
½ruþ ðruÞT �: ð8Þ

In order to solve numerically Eqs. (1)–(3) it is necessary to impose
boundary conditions for the velocity field and non-Newtonian ex-
tra-stress tensor s. If the velocity at inflows is constant, then the
non-Newtonian tensor is set as s = 0, while for parabolic velocity
at inflows the non-Newtonian tensor s is defined as in the Old-
royd-B model [18,33]. At outflows the homogeneous Neumann con-
ditions are employed for u and s (see [41]), namely,

@u
@n
¼ 0 and

@s
@n
¼ 0 ð9Þ

where n represents the normal direction of the outflow boundary.
For rigid walls, the no-slip condition u = 0 is used and s is computed
directly from Eq. (3) (details are given in [33]).

Assuming a passive atmosphere, the correct boundary condi-
tions for the free surface are given by

n � ðr � nÞ ¼ 0; ð10Þ
t1 � ðr � nÞ ¼ 0; ð11Þ
t2 � ðr � nÞ ¼ 0; ð12Þ

where r ¼ �pIþ 2 b
Re Dþ s is the total stress tensor and n = (nx,ny,nz),

t1 = (t1x, t1y, t1z) and t2 = (t2x, t2y, t2z) are, respectively, unit normal and
tangential vectors to the free surface.

3. Overview of numerical implementation

The governing and constitutive equations are solved using the
strategy of Oishi et al. [33], which combines projection methods
with an implicit technique for the treatment of pressure on free
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